Skip to main content

Cryogenic Deuterium and Deuterium-Tritium Direct–Drive Implosions on Omega

  • Chapter
  • First Online:
Laser-Plasma Interactions and Applications

Part of the book series: Scottish Graduate Series ((SGS))

Abstract

The success of ignition target designs in inertial confinement fusion (ICF) experiments critically depends on the ability to maintain the main fuel entropy at a low level while accelerating the shell to ignition-relevant velocities of V imp > 3 ×107 cm/s. The University of Rochester’s Laboratory for Laser Energetics has been implodingcryogenic deuterium and deuterium–tritium targets on the Omega Laser System for over a decade. Fuel entropy is inferred in these experiment by measuring fuel areal density near peak compression. Measured areal densities up to ⟨ρRn ∼ 300 mg/cm2 (larger than 85 % of predicted values) are demonstrated in the cryogenic implosion with V imp approaching 3 ×107 cm/s and peak laser intensities of 8 ×1014 W/cm2. Scaled to the laser energies available at the National Ignition Facility, implosions, hydrodynamically equivalent to theseOmega designs, are predicted to achieve ⟨ρRn > 1. 2 g/cm2, sufficient for ignition demonstration in direct-drive ICF experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Lindl, Inertial Confinement Fusion (Springer, New York, 1998)

    Google Scholar 

  2. S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Clarendon press, Oxford, 2004)

    Book  Google Scholar 

  3. M.C. Herrmann, M. Tabak, J.D. Lindl, Phys. Plasmas 8, 2296 (2001)

    Article  ADS  Google Scholar 

  4. R. Betti et al., Phys. Plasmas 9, 2277 (2002)

    Article  ADS  Google Scholar 

  5. V.N. Goncharov in Laser-Plasma Interactions, ed. by D.A. Jaroszynski, R. Bingham, R.A. Cairns (CRC Press, Boca Raton, 2009), p. 409

    Google Scholar 

  6. J. Meyer-ter-Vehn, Nucl. Fusion 22, 561 (1982)

    Article  Google Scholar 

  7. R. Betti et al., Phys. Plasmas 17, 058102 (2010)

    Article  ADS  Google Scholar 

  8. A. Kemp, J. Meyer-ter-Vehn, S. Atzeni, Phys. Rev. Lett. 15, 3336 (2001)

    Article  ADS  Google Scholar 

  9. S.W. Haan et al., Phys. Plasmas 18, 051001 (2011)

    Article  ADS  Google Scholar 

  10. C.P. Verdon, Bull. Am. Phys. Soc. 38, 2010 (1993)

    Google Scholar 

  11. P.W. McKenty et al., Phys. Plasmas 8, 2315 (2001)

    Article  ADS  Google Scholar 

  12. J.A. Paisner et al., Laser Focus World, 30, 75 (1994)

    Google Scholar 

  13. V.N. Goncharov et al., Phys. Plasmas 7, 2062 (2000)

    Article  ADS  Google Scholar 

  14. W.L. Kruer, The Physics of Laser-Plasma Interactions, Frontiers in Physics, vol. 73, ed. by D. Pines (Addison-Wesley, Redwood City, 1988), Chap. 4, p. 81

    Google Scholar 

  15. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Claredon, Oxford, 1961), p. 428

    MATH  Google Scholar 

  16. J. Sanz, Phys. Rev. Lett. 73, 2700 (1994); V.N. Goncharov et al., Phys. Plasmas 3, 1402 (1996)

    Google Scholar 

  17. R. Betti et al., Phys. Plasmas 5, 1446 (1998)

    Article  ADS  Google Scholar 

  18. J. Sanz, Phys. Rev. E 53, 4026 (1996)

    Article  ADS  Google Scholar 

  19. V.N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)

    Article  ADS  Google Scholar 

  20. C.D. Zhou, R. Betti, Phys. Plasmas 14, 072703 (2007)

    Article  ADS  Google Scholar 

  21. V.N. Goncharov et al., Phys. Plasmas 10, 1906 (2003)

    Article  ADS  Google Scholar 

  22. H. Sawada et al., Phys. Plasmas 14, 122703 (2007)

    Article  ADS  Google Scholar 

  23. A.L. Kritcher et al., Phys. Rev. Lett. 107, 015002 (2011)

    Article  ADS  Google Scholar 

  24. H. Sawada et al., Phys. Plasmas 16, 052702 (2009)

    Article  ADS  Google Scholar 

  25. F.J. Marshall et al., Phys. Rev. Lett. 102, 185004 (2009)

    Article  ADS  Google Scholar 

  26. R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)

    Article  ADS  Google Scholar 

  27. F. Seguin et al., Phys. Plasmas 9, 2725 (2002)

    Article  ADS  Google Scholar 

  28. J.A. Frenje et al., Phys. Plasmas 16, 042704 (2009); J.A. Frenje et al., Phys. Plasmas 17, 056311 (2010)

    Google Scholar 

  29. D.G. Hicks et al., Phys. Plasmas 17, 102703 (2010)

    Article  ADS  Google Scholar 

  30. J.P. Knauer et al., Bull. Am. Phys. Soc. 50, 133 (2005)

    Google Scholar 

  31. C. Stoeckl et al., Rev. Sci. Instrum. 74, 1713 (2003)

    Article  ADS  Google Scholar 

  32. T.J. Murphy et al., Rev. Sci. Instrum. 66, 930 (1995)

    Article  ADS  Google Scholar 

  33. H. Brysk, Plasma Phys. 15, 611 (1973)

    Article  ADS  Google Scholar 

  34. J.M. Soures et al., in Proceedings of the 10th Symposium on Fusion Engineering, Philadelphia, 1983 (IEEE, New York, 1983), p. 1392

    Google Scholar 

  35. F.J. Marshall et al., Phys. Rev. A 40, 2547 (1989)

    Article  ADS  Google Scholar 

  36. R.L. McCrory et al., Nature 335, 225 (1988)

    Article  ADS  Google Scholar 

  37. D.L. Musinski et al., J. Appl. Phys. 51, 1394 (1980)

    Article  ADS  Google Scholar 

  38. S. Kacenjar et al., J. Appl. Phys. 56, 2027 (1984); S. Skupsky, S. Kacenjar, J. Appl. Phys. 52 , 2608 (1981)

    Google Scholar 

  39. J. Delettrez et al., Phys. Rev. A 36, 3926 (1987)

    Article  ADS  Google Scholar 

  40. J.K. Hoffer, L.R. Foreman, Phys. Rev. Lett. 60, 1310 (1988); A.J. Martin, R.J. Simms, R.B. Jacobs, J. Vac. Sci. Technol. A 6, 1885 (1988)

    Google Scholar 

  41. G.W. Collins et al., J. Vac. Sci. Technol. A 14 , 2897 (1996)

    Article  ADS  Google Scholar 

  42. See National Technical Information Service Document No. DOE/SF/19460-335 [Laboratory for Laser Energetics LLE Review 81, 6 (1999)]. Copies may be obtained from the National Technical Information Service, Springfield, VA 22161

    Google Scholar 

  43. T.R. Boehly et al., Opt. Commun. 133, 495 (1997)

    Article  ADS  Google Scholar 

  44. C. Stoeckl et al., Phys. Plasmas 9, 2195 (2002)

    Article  ADS  Google Scholar 

  45. T.C. Sangster et al., Phys. Plasmas 14, 058101 (2007)

    Article  ADS  Google Scholar 

  46. P.W. McKenty et al., Phys. Plasmas 11, 2790 (2004)

    Article  ADS  Google Scholar 

  47. F.J. Marshall et al., Phys. Plasmas 12, 056302 (2005)

    Article  ADS  Google Scholar 

  48. P.B. Radha et al., Phys. Plasmas 12, 032702 (2005)

    Article  ADS  Google Scholar 

  49. V.N. Goncharov et al., Phys. Plasmas 7, 5118 (2000)

    Article  ADS  Google Scholar 

  50. T.R. Boehly et al., Phys. Plasmas 8, 2331 (2001)

    Article  ADS  Google Scholar 

  51. K. Anderson, R. Betti, Phys. Plasmas 11, 5 (2004)

    Article  ADS  Google Scholar 

  52. S. Skupsky et al., J. Appl. Phys. 66, 3456 (1989)

    Article  ADS  Google Scholar 

  53. W. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City, 1988)

    Google Scholar 

  54. R.C. Malone, R.L. McCrory, R.L. Morse, Phys. Rev. Lett. 34, 721 (1975)

    Article  ADS  Google Scholar 

  55. L. Spitzer, R. Harm, Phys. Rev. 89, 977 (1953)

    Article  ADS  MATH  Google Scholar 

  56. N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (San Francisco Press, San Francisco, 1986)

    Google Scholar 

  57. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, 1970)

    Google Scholar 

  58. V.N. Goncharov et al., Phys. Plasmas 15, 056310 (2008)

    Article  ADS  Google Scholar 

  59. V.N. Goncharov, G. Li, Phys. Plasmas 11, 5680 (2004)

    Article  ADS  Google Scholar 

  60. V.A. Smalyuk et al., Phys. Rev. Lett. 101, 025002 (2008)

    Article  ADS  Google Scholar 

  61. V.N. Goncharov, Phys. Rev. Lett. 82, 2091 (1999)

    Article  ADS  Google Scholar 

  62. O.V. Gotchev et al., Phys. Rev. Lett. 96, 115005 (2006)

    Article  ADS  Google Scholar 

  63. W. Seka et al., Phys. Plasmas. 15, 056312 (2008)

    Article  ADS  Google Scholar 

  64. I.V. Igumenshchev et al., Phys. Plasmas, 14, 092701 (2007)

    Article  ADS  Google Scholar 

  65. A. Simon et al., Phys. Fluids 26, 3107 (1983)

    Article  ADS  MATH  Google Scholar 

  66. C. Stoeckl et al., Rev. Sci. Instrum. 72, 1197 (2001)

    Article  ADS  Google Scholar 

  67. V.A. Smalyuk et al., Phys. Rev. Lett. 100, 185005 (2008)

    Article  ADS  Google Scholar 

  68. H.N. Kornblum, R.L. Kauffman, J.A. Smith, Rev. Sci. Instrum. 57, 2179 (1986); K.M. Campbell et al., Rev. Sci. Instrum. 75, 3768 (2004)

    Google Scholar 

  69. T.C. Sangster et al., Phys. Rev. Lett. 100, 185006 (2008)

    Article  ADS  Google Scholar 

  70. T.R. Boehly et al., Phys. Plasmas 16, 056302 (2009)

    Article  ADS  Google Scholar 

  71. L.M. Baker, R.E. Hollenbach, J. App. Phys. 43, 4669 (1972); P.M. Celliers et al., Appl. Phys. Lett. 73, 1320 (1998)

    Google Scholar 

  72. V.N. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  73. T.R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011)

    Article  ADS  Google Scholar 

  74. I.V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010)

    Article  ADS  Google Scholar 

  75. C.J. Randall, J.R. Albritton, J.J. Thomson, Phys. Fluids 24, 1474 (1981)

    Article  ADS  MATH  Google Scholar 

  76. S.X. Hu et al., Phys. Plasmas 17, 102706 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeri N. Goncharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goncharov, V.N. (2013). Cryogenic Deuterium and Deuterium-Tritium Direct–Drive Implosions on Omega. In: McKenna, P., Neely, D., Bingham, R., Jaroszynski, D. (eds) Laser-Plasma Interactions and Applications. Scottish Graduate Series. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00038-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00038-1_7

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00037-4

  • Online ISBN: 978-3-319-00038-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics