Skip to main content

The Effect of a Radiation Field on Excitation and Ionisation in Non-LTE High Energy Density Plasmas

  • Chapter
  • First Online:
Laser-Plasma Interactions and Applications

Part of the book series: Scottish Graduate Series ((SGS))

  • 3628 Accesses

Abstract

We look at the direct effect of an ambient radiation field on excitation and ionisation in a non-LTE high energy density plasma. The equations that determine the excitation and ionisation are presented together with a comparison between theory and experiment for a number of cases. In particular we look at so-called photo-ionised plasmas which are also of interest in astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Mihalas, Stellar Atmospheres (W H Freeman and Company, San Francisco, 1978)

    Google Scholar 

  2. W.E. Alley et al., J. Quant. Spectrosc. Radiat. Transf. 27, 257 (1982)

    Article  ADS  Google Scholar 

  3. D. Mihalas, B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics (Dover, Mineola, 1999)

    Google Scholar 

  4. J. Castor, Radiation Hydrodynamics (Cambridge University Press, New York, 2004)

    Book  Google Scholar 

  5. F.M. Kerr et al., Astrophys. J. 629, 1091 (2005)

    Article  ADS  Google Scholar 

  6. G. J. Phillips et al. High Energy Density Phys. 4, 18 (2008)

    Article  ADS  Google Scholar 

  7. M.E. Foord et al., Phys. Rev. Lett. 85, 992 (2000)

    Article  ADS  Google Scholar 

  8. M.E. Foord et al. J. Quant. Spectrosc. Radiat. Transf. 65, 231 (2000)

    Article  ADS  Google Scholar 

  9. S.H. Glenzer et al., Phys. Rev. Lett. 87, 045002 (2001)

    Article  ADS  Google Scholar 

  10. C. Chenais-Popovics et al., Phys. Rev. E. 65, 046418 (2002)

    Article  ADS  Google Scholar 

  11. K.L. Wong et al., Phys. Rev. Lett. 90, 235001 (2003)

    Article  ADS  Google Scholar 

  12. R.F. Heeter et al., Phys. Rev. Lett. 99, 0195001 (2007)

    Article  ADS  Google Scholar 

  13. N. Qi, M. Krishnan, Phys. Rev. Lett. 59, 2051 (1987)

    Article  ADS  Google Scholar 

  14. S.J. Rose, J. Quant. Spectrosc. Radiat. Transf. 33, 603 (1985)

    Article  ADS  Google Scholar 

  15. J. Nilsen, J.H. Scofield, E.A. Chandler, Appl. Opt. 31, 4950 (1992)

    Article  ADS  Google Scholar 

  16. J. Nilsen, App. Opt. 31, 4957 (1992)

    Article  ADS  Google Scholar 

  17. J.S. Wark et al., Phys. Rev. Lett. 72, 1826 (1994)

    Article  ADS  Google Scholar 

  18. P.K. Patel et al., J. Quant. Spectrosc. Radiat. Transf. 57, 683 (1997)

    Article  ADS  Google Scholar 

  19. P.K. Patel et al., J. Quant. Spectrosc. Radiat. Transf. 58, 835 (1997)

    Article  ADS  Google Scholar 

  20. P.K. Patel et al., J. Quant. Spectrosc. Radiat. Transf. 65, 429 (2000)

    Article  ADS  Google Scholar 

  21. M.E. Beer et al., J. Quant. Spectrosc. Radiat. Transf. 65, 71 (2000)

    Article  ADS  Google Scholar 

  22. A.R. Almiev, S.J. Rose, J.S. Wark, J. Quant. Spectrosc. Radiat. Transf. 70, 11 (2001)

    Article  ADS  Google Scholar 

  23. A.R. Almiev, S.J. Rose, J.S. Wark, J. Quant. Spectrosc. Radiat. Transf. 71, 129 (2001)

    Article  ADS  Google Scholar 

  24. C.A. Back, C. Chenais-Popovics, R.W. Lee, Phys. Rev. A. 44, 6730 (1991)

    Article  ADS  Google Scholar 

  25. P. Monier, C. Chenais-Popovics, J.P. Geindre, J.C. Gauthier, Phys. Rev. 38, 2508 (1988)

    Article  ADS  Google Scholar 

  26. D.M. ONeill et al., Inst. Phys. Conf. Ser. No. 116, International Colloquium on x-ray Lasers (1990)

    Google Scholar 

  27. A. Gouveia et al., J. Quant. Spectrosc. Radiat. Transf. 81, 199 (2003)

    Article  ADS  Google Scholar 

  28. S. Johansson, V. Letokhov, Phys. Rev. Lett. 90, 011101-1 (2003)

    Article  ADS  Google Scholar 

  29. S. Johansson, V. Letokhov, MNRAS 364, 731 (2005)

    ADS  Google Scholar 

  30. S. Johansson, V. Letokhov, Astrophysical Lasers (Oxford University Press, Oxford/New York, 2009)

    Google Scholar 

  31. C.B. Tarter, W.H. Tucker, E.E. Salpeter, Astrophys. J. 156, 943 (1969)

    Article  ADS  Google Scholar 

  32. C.B. Tarter, E.E. Salpeter, Astrophys. J. 156, 953 (1969)

    Article  ADS  Google Scholar 

  33. G.J. Ferland et al., Publ. Astron. Soc. Pac. 110, 761 (1998)

    Article  ADS  Google Scholar 

  34. S.J. Rose, J. Quant. Spectrosc. Radiat. Transf. 54, 333 (1995)

    Article  ADS  Google Scholar 

  35. S.J. Rose, J. Phys. B: Atom. Molec. Opt. Phys. 31, 2129 (1998)

    Article  ADS  Google Scholar 

  36. P. Renaudin et al., Phys. Rev. E 50, 2186 (1994)

    Article  ADS  Google Scholar 

  37. C.C. Smith et al., J. Quant. Spectrosc. Radiat. Transf. 54, 387 (1995)

    Article  ADS  Google Scholar 

  38. J.E. Bailey et al., J. Quant. Spectrosc. Radiat. Transf. 71, 151 (2001)

    Article  Google Scholar 

  39. M.E. Foord et al., Phys. Rev. Lett. 93, 055002 (2004)

    Article  ADS  Google Scholar 

  40. S.J. Rose et al., J. Phys. B: Atom. Molec. Opt. Phys. 37, L337 (2004)

    Article  ADS  Google Scholar 

  41. S.J. Rose, Rutherford Appleton Laboratory Report, RAL-TR-97-020 (1997)

    Google Scholar 

  42. Y. Morita et al., J. Quant. Spectrosc. Radiat. Transf. 71, 519 (2001)

    Article  ADS  Google Scholar 

  43. S. Fujioka et al., Nat. Phys. 5, 821 (2009)

    Article  Google Scholar 

  44. E. Hill, S.J. Rose, High Energy Density Phys. 5, 302 (2009)

    Article  ADS  Google Scholar 

  45. E. Hill, S.J. Rose, Phys. Plasmas 17, 103301 (2010)

    Article  ADS  Google Scholar 

  46. E. Hill, S.J. Rose, High Energy Density Phys. 7, 377 (2011)

    Article  ADS  Google Scholar 

  47. C. Bowen, R.W. Lee, Yu Ralchenko, J. Quant. Spectrosc. Radiat. Transf. 99, 102 (2006)

    Article  ADS  Google Scholar 

  48. J.G. Rubiano et al., High Energy Density Phys. 3, 225 (2007)

    Article  ADS  Google Scholar 

  49. C.J. Fontes et al., High Energy Density Phys. 5, 15 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Rose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rose, S.J. (2013). The Effect of a Radiation Field on Excitation and Ionisation in Non-LTE High Energy Density Plasmas. In: McKenna, P., Neely, D., Bingham, R., Jaroszynski, D. (eds) Laser-Plasma Interactions and Applications. Scottish Graduate Series. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00038-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00038-1_4

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00037-4

  • Online ISBN: 978-3-319-00038-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics