Medical Images Transform by Multistage PCA-Based Algorithm

Part of the Studies in Computational Intelligence book series (SCI, volume 473)


In this paper a novel approach for medical images transform by the Multistage Principal Component Analysis (MPCA) algorithm is presented. It consists of applying PCA over series of pixels grouped two by two in multiple stages. The process is extremely straightforward and the computation complexity is considerably reduced in comparison to the full PCA performed over the whole image. Promising results are achieved experimentally over a multitude of test images and the proposed approach is considered very perspective for both lossy and lossless compression of medical visual data.


Medical image transform Compression 2D Multistage PCA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jain, A.: A fast Karhunen-Loeve Transform for a Class of Random Processes. IEEE Trans. Commun. COM-24, 1023–1029 (1976)Google Scholar
  2. 2.
    Dony, R.: Karhunen-Loeve Transform. In: Rao, K.R., Yip, P.C. (eds.) The Transform and Data Compression Handbook. CRC Press (2001)Google Scholar
  3. 3.
    Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer, NY (2002)MATHGoogle Scholar
  4. 4.
    Gonzales, R., Woods, R.: Digital Image Processing, 2nd edn. Prentice Hall (2002)Google Scholar
  5. 5.
    Hao, P., Shi, Q.: Reversible Integer KLT for Progressive-to-Lossless Compression of Multiple Component Images. In: IEEE ICIP, Barcelona, Spain, vol. 1, pp. 633–636 (2003)Google Scholar
  6. 6.
    Fleury, M., Dowton, A., Clark, A.: Karhunen-Loeve Transform: An Exercise in Simple Image Processing Parallel Pipelinnes. In: Euro-Par 1997, pp. 1–25 (1997)Google Scholar
  7. 7.
    Li, W., Yue, H., Cervantes, S., Qin, S.: Recursive PCA for adaptive process monitoring. Journal of Process Control 10, 471–486 (2000)CrossRefGoogle Scholar
  8. 8.
    Erdogmus, D., Rao, Y., Peddaneni, H., Hegde, A., Principe, J.: Recursive Principal Components Analysis Using Eigenvector Matrix Perturbation. EURASIP Journal on Advances in Signal Processing 13, 2034–2041 (2004)CrossRefGoogle Scholar
  9. 9.
    Hanafi, M., Kohler, A., Qannari, E.: Shedding New Light on Hierarchical Principal Component Analysis. Journal of Chemometrics 24(11-12), 703–709 (2010)CrossRefGoogle Scholar
  10. 10.
    Grasedyck L.: Hierarchical Singular Value Decomposition of Tensors, Preprint 20, AG Numerik/Optimierung, Philipps-Universitat Marburg, pp. 1–29 (July 8, 2009) Google Scholar
  11. 11.
    Diamantaras, K., Kung, S.: Principal Component Neural Networks: Theory and Applications. John Wiley & Sons, New York (1996)MATHGoogle Scholar
  12. 12.
    Solo, V., Kong, X.: Performance Analysis of Adaptive Eigen Analysis Algorithms. IEEE Trans. Signal Processing 46(3), 636–645 (1998)CrossRefGoogle Scholar
  13. 13.
    Lazarova, M., Angelova, M.: GIS Web Services for Distributed Computing Systems. In: Proc. of Fourth International Bulgarian-Greek Conference - Computer Science 2008, Kavala, Greece, pp. 1010–1015 (2008)Google Scholar
  14. 14.
    Brodić, D., Milivojević, D.: An Algorithm for the Estimation of the Initial Text Skew. Information Technology and Control 41(3), 211–219 (2012)Google Scholar
  15. 15.
    Hoffman, J.: Numerical Methods for Engineers and Scientists. Marcel Dekker (2001)Google Scholar
  16. 16.
    Korn, G., Korn, T.: Mathematical Handbook for Scientists and Engineers. McGraw-Hill Book Company, NY (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Ivo Draganov
    • 1
  • Roumen Kountchev
    • 1
  • Veska Georgieva
    • 1
  1. 1.Department of Radio Communications and Video TechnologiesTechnical University - SofiaSofiaBulgaria

Personalised recommendations