Decorrelation of Sequences of Medical CT Images Based on the Hierarchical Adaptive KLT

  • Roumen Kountchev
  • Peter Ivanov
Part of the Studies in Computational Intelligence book series (SCI, volume 473)


In this work is presented one new approach for processing of sequences of medical CT images, called Hierarchical Adaptive Karhunen-Loeve Transform (HAKLT). The aim is to achieve high decorrelation for each group of 9 consecutive CT images, obtained from the original larger sequence. In result, the main part of the energy of all images in one group is concentrated in a relatively small number of eigen images. This result could be obtained using the well-known Karhunen-Loeve Transform (KLT) with transformation matrix of size 9x9. However, for the implementation of the 2-levels HAKLT in each level are used 3 transform matrices of size 3x3, in result of which the computational complexity of the new algorithm is reduced in average 2 times, when compared to that of KLT with 9x9 matrix. One more advantage is that the algorithm permits parallel processing for each group of 3 images in every hierarchical level. In this work are also included the results of the algorithm modeling for sequences of real CT images, which confirm its ability to carry out efficient decorrelation. The HAKLT algorithm could be farther used as a basis for the creation of algorithms for efficient compression of sequences of CT images and for features space minimization in the regions of interest, which contain various classes of searched objects.


Decorrelation of medical CT image sequences Hierarchical Adaptive Karhunen-Loeve Transform (HAKLT) Group of Medical Images 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gonzales, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall (2008)Google Scholar
  2. 2.
    Rangayyan, R.: Biomedical Image Analysis. CRC Press, Boca Raton (2005)Google Scholar
  3. 3.
    Dougherty, G.: Digital Image Processing for Medical Applications. Cambridge University Press (2009)Google Scholar
  4. 4.
    Graham, R., Perris, R., Scarsbrook, A.: DICOM demystified: A review of digital file formats and their use in radiological practice. Clinical Radiology 60, 1133–1140 (2005)CrossRefGoogle Scholar
  5. 5.
    Wu, Y.: Medical image compression by sampling DCT coefficients. IEEE Trans. on Information Technology in Biomedicine 6(1), 86–94 (2002)CrossRefGoogle Scholar
  6. 6.
    Ramesh, S., Shanmugam, D.: Medical image compression using wavelet decomposition for prediction method. International Journal of Computer Science and Information Security (IJCSIS) 7(1), 262–265 (2010)Google Scholar
  7. 7.
    Lalitha, Y., Latte, M.: Image compression of MRI image using planar coding. Intern. J. of Advanced Computer Science and Applications (IJACSA) 2(7), 23–33 (2011)Google Scholar
  8. 8.
    Roos, P., Viergever, M.: Reversible interframe compression of medical images: a comparison of decorrelation methods. IEEE Trans. Medical Imaging 10(4), 538–547 (1991)CrossRefGoogle Scholar
  9. 9.
    Reed, T. (ed.): Digital Image Sequence Processing, Compression, and Analysis. CRC Press (2004)Google Scholar
  10. 10.
    Szilágyi, S.M., Szilágyi, L., Benyó, Z.: Echocardiographic Image Sequence Compression Based on Spatial Active Appearance Model. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 841–850. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Miaou, S., Ke, F., Chen, S.: A Lossless Compression Method for Medical Image Sequences Using JPEG-LS and Interframe Coding. IEEE Trans. on Inform. Techn. in Biomedicine 13(5), 818–821 (2009)CrossRefGoogle Scholar
  12. 12.
    Bitaa, I., Barretb, M., Phamc, D.: On Optimal Transforms in Lossy Compression of Multicomponent Images with JPEG2000. SP 90(3), 759–773 (2010)Google Scholar
  13. 13.
    Thirumalai, V.: Distributed Compressed Representation of Correlated Image Sets, Thesis No 5264, Lausanne, EPFL (2012)Google Scholar
  14. 14.
    Jain, A.: A fast Karhunen-Loeve transform for a class of random processes. IEEE Trans. Commun. COM-24, 1023–1029 (1976)Google Scholar
  15. 15.
    Dony, R.: Karhunen-Loeve Transform. In: Rao, K., Yip, P. (eds.) The Transform and Data Compression Handbook, ch. 1. CRC Press, Boca Raton (2001)Google Scholar
  16. 16.
    Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer, NY (2002)zbMATHGoogle Scholar
  17. 17.
    Ujwala, P., Uma, M.: Image Fusion using Hierarchical PCA. In: Intern. Conf. on Image Information Processing (ICIIP), pp. 1–6 (2011)Google Scholar
  18. 18.
    Hanafi, M., Kohler, A., Qannari, E.: Shedding new light on Hierarchical Principal Component Analysis. J. of Chemometrics 24(11-12), 703–709 (2010)CrossRefGoogle Scholar
  19. 19.
    Langs, G., Bischof, H., Kropatsch, W.G.: Hierarchical Top Down Enhancement of Robust PCA. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SSPR&SPR 2002. LNCS, vol. 2396, pp. 234–243. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Grasedyck, L.: Hierarchical Singular Value Decomposition of Tensors, Preprint 20, AG Numerik/Optimierung, Philipps-Universitat Marburg, pp. 1–29 (2009)Google Scholar
  21. 21.
    Diamantaras, K., Kung, S.: Principal Component Neural Networks: Theory and Applications. John Wiley & Sons, NY (1996)zbMATHGoogle Scholar
  22. 22.
    Solo, V., Kong, X.: Performance analysis of adaptive eigen analysis algorithms. IEEE Trans. Signal Processing 46(3), 636–645 (1998)CrossRefGoogle Scholar
  23. 23.
    Hao, P., Shi, Q.: Reversible Integer KLT for Progressive-to-Lossless Compression of Multiple Component Images. IEEE ICIP, Barcelona (2003)Google Scholar
  24. 24.
    Kountchev, R., Kountcheva, R.: Image Color Space Transform with Enhanced KLT. In: Nakamatsu, K., Phillips-Wren, G., Jain, L.C., Howlett, R.J. (eds.) New Advances in Intelligent Decision Technologies. SCI, vol. 199, pp. 171–182. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Department of Radio Communications and Video TechnologiesTechnical University of SofiaSofiaBulgaria

Personalised recommendations