Advertisement

On Confidentially Connected-Free Graphs

Part of the Studies in Computational Intelligence book series (SCI, volume 473)

Abstract

Graph theory provides algorithms and tools to handle models for important applications in biology and medicine, such as drug design, diagnosis, or visualization. This paper deals with some theoretical results concerning the relationship between two classes of graphs which may be susceptible of applications in medicine and intelligent systems. The class of Confidentially Connected-free graphs is introduced and related to the class of Asteroidal Triple-free graphs, as well as to the graphs that have a star-cutset. We give a characterization of Confidentially Connected-free graphs using neighborhoods and weakly decomposition.

Keywords

confidentially connected CC-free graphs AT-free graphs asteroidal triple star-cutset weakly decomposition recognition algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berge, C.: Graphs. Nort-Holland, Amsterdam (1985)Google Scholar
  2. 2.
    Berry, A., Bordat, J.-P., Heggernes, P.: Recognizing weakly triangulated graphs by edge separability, Res. Rep. LIRMM, submittted to SWAT (2000)Google Scholar
  3. 3.
    Carlisle, M.C., Loyd, E.L.: On the k-Coloring of Intervals. In: Dehne, F., Fiala, F., Koczkodaj, W.W. (eds.) ICCI 1991. LNCS, vol. 497, pp. 90–101. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  4. 4.
    Chvatal, V.: Star cutsets and perfect graphs. J. Combin. Theory, Ser. B 39, 189–199 (1985)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cohen, J.E.: Food webs and niche space. Monographs in population biology, vol. 11, pp. xv+1 190. Princeton University Press, Princeton (1978) ISBN 978-0-691-08202-8Google Scholar
  6. 6.
    Corneil, D.G., Olariu, S., Stewart, L.: Ateroidal triple-free graphs. SIAM J. Discrete Math. 10(3), 399–430 (1997)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Croitoru, C., Olaru, E., Talmaciu, M.: Confidentially connected graphs, The annals of the University "Dunarea de Jos" of Galati. In: Proceedings of the Intern. Conf. "The Risk in Contemporany Economy", Supplement to Tome XVIII, XXII (2000)Google Scholar
  8. 8.
    Croitoru, C., Talmaciu, M.: On Confidentially connected graphs. Bul. Stiint. Univ. Baia Mare, Ser B, Matematica - Informatica XVI(1), 13–16 (2000)Google Scholar
  9. 9.
    Dirac, G.A.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 25(1-2), 71–76 (1961), doi:10.1007/BF02992776MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Fabri, J.: Automatic storage optimization. UMI Press Ann Arbor, MI (1982)Google Scholar
  11. 11.
    Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. Math. 15(3), 835–855 (1965)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)MATHGoogle Scholar
  13. 13.
    Hashimoto, A., Stevens, J.: Wire routing by optimizing channel assignment within large apertures. In: Proc., 8th IEEE Design Automation Workshop, pp. 155–169 (1971)Google Scholar
  14. 14.
    Jungck, J.R., Dick, O., Dick, A.G.: Computer assisted sequencing, Interval graphs and molecular evolution. Biosystem 15, 259–273 (1982)CrossRefGoogle Scholar
  15. 15.
    Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)MathSciNetMATHGoogle Scholar
  16. 16.
    Ohtsuki, T., Mori, H., Khu, E.S., Kashiwabara, T., Fujisawa, T.: One dimensional logic gate assignment and interval graph. IEEE Trans. Circuits and Systems 26, 675–684 (1979)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Talmaciu, M.: Decomposition problems in the graph theory with applications in combinatorial optimization - Ph. D. Thesis, University "Al. I. Cuza" Iasi, Romania (2002)Google Scholar
  18. 18.
    Talmaciu, M., Nechita, E.: Recognition algorithm for diamond-free graphs. Informatica 18(3), 457–462 (2007)MathSciNetMATHGoogle Scholar
  19. 19.
    Zhang, P., Schon, E.A., Fischer, S.G., Cayanis, E., Weiss, J., Kistler, S., Bourne, P.E.: An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA. Bioinformatics 10(3), 309–317 (1994), doi:10.1093/bioin-formatics/10.3.309CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Mihai Talmaciu
    • 1
  • Elena Nechita
    • 1
  • Barna Iantovics
    • 2
  1. 1.”Vasile Alecsandri” UniversityBacauRomania
  2. 2.”Petru Maior” UniversityTargu MuresRomania

Personalised recommendations