Semi-automatic Ultrasound Medical Image Recognition for Diseases Classification in Neurology

  • Jiří Blahuta
  • Tomáš Soukup
  • Petr Čermák
  • David Novák
  • Michal Večerek
Part of the Studies in Computational Intelligence book series (SCI, volume 473)

Abstract

The main aim of this work is semi-automatic ROI positionig in transcranial medical images based on multi-agent systems (MAS) in preprocessing module. Designed approach is based on image processing and is realized by means of artifical intelligence, MAS, which has been experimentally designed in Matlab software environment. Within this processing has been worked with a set of TCS static images in grayscale and binary representation to experimental testing to positioning. This designed application is used for diseases classification in neurology.

Keywords

Agent MAS Ultrasound TCS image ROI DICOM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, G.: Degeneration of Substantia Nigra in Chronic Parkinson’s Disease Visualized by Transcranial Color-coded Real-time Sonography. Journal of Neuroimaging 45, 182–184 (1995)Google Scholar
  2. 2.
    Blahuta, J., Soukup, T., Čermák, P.: The image Recognition of Brain-stem Ultrasound Images with Using a Neural Network Based on PCA. In: IEEE Intern. Workshop on BARI, pp. 137–142 (May 2011)Google Scholar
  3. 3.
    Blahuta, J., Soukup, T., Čermák, P.: The Image Recognition of Brain-stem Ultrasound Images with Using a Neural Network Based on PCA. Recent Researches in Communications, Electrical and Computer Engineering, EMEH 11, 134–142 (2011)Google Scholar
  4. 4.
    Blahuta, J., Soukup, T., Čermák, P.: The ROI Defect Statistical Analysis of Substantia Nigra to Reproducibility of Designed Experimental Algorithm for Potential PD Diagnosis. In: Mathematical Methods and Techniques in Engineering, pp. 261–266. WSEAS Press, Catania (2011)Google Scholar
  5. 5.
    Gelb, D., O. E. G.-S.: Diagnostic Criteria for Parkinson´s Disease. Archives of Neurology 56(1), 33–39 (1999)Google Scholar
  6. 6.
    Grossberg, S., Carpenter, A.: Neural Networks for Vision and Image Processing (1992)Google Scholar
  7. 7.
    Petrou, M., Wiltshire, S., Image Processing, G.P.: Dealing with Texture (2006)Google Scholar
  8. 8.
    Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and Adaptive Systems: Fundamentals Through Simulations. John Wiley & Sons, Inc. (2000)Google Scholar
  9. 9.
    Schreiber, J., Sojka, E., Ličev, L., Škňouřilová, P., Gaura, J., Školoudík, D.: A New Method for the Detection of Brain Stem in Transcranial Ultrasound Images. Proc. of Biosignals 2, 478–483 (2008)Google Scholar
  10. 10.
    Shoham, Y., Leiton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press (2008)Google Scholar
  11. 11.
    Smagt, P., Kröse, B.: An Introduction to Neural Networks, The University of Amsterdam, 8th edn. (1996)Google Scholar
  12. 12.
    Školoudík, D.: Reproducibility of Sonographic Measurement of the Substantia Nigra. Ultrasound in Medicine & Biology (9), 1347–1352 (2007)Google Scholar
  13. 13.
    Walter, U., Wittstock, M., Benecke, R., Dressler, D.: Substantia Nigra Echogenicity is Normal in Non-extrapyramidal Cerebral Disorders but Increased in Parkinson’s Disease. J. Neural Transm. 109, 191–196 (2002)CrossRefGoogle Scholar
  14. 14.
    Webster, D.D.: Critical Analysis of the Disability in Parkinson’s Disease. Mod. Treat 5, 257–282 (1968)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Jiří Blahuta
    • 1
  • Tomáš Soukup
    • 1
  • Petr Čermák
    • 1
  • David Novák
    • 1
  • Michal Večerek
    • 2
  1. 1.Filozoficko-přírodovědecká fakultaSlezská univerzita v OpavěOpavaCzech Republic
  2. 2.Fakulta kybernetiky a informatikyVŠB-Technická univerzita v OstravěOstravaCzech Republic

Personalised recommendations