Skip to main content

An Overview of the New Frontiers of Economic Complexity

  • Conference paper

Part of the New Economic Windows book series (NEW)

Abstract

The fundamental idea developed throughout this short overview on Economic Complexity is that a revolution of the revolution of Economics is needed to turn this field into a mature discipline. The first revolution of Economic Complexity (Bouchaud in Nature 455:1181, 2008) led to a conceptual paradigm shift and agent-based models have shown, from a qualitative point of view, the crucial role played by concepts like agent heterogeneity and herding behavior to understand the non-trivial features of financial time series. The second revolution must lead the paradigm shift from a conceptual and qualitative level to a quantitative and effective description of economic systems. This can be achieved through the introduction of new metrics and quantitative methods in Social Sciences (Economics, Finance, opinion dynamics, etc.). In fact, the concept of metrics is usually neglected by mainstream theories of Economy and Finance. Only in that way Economic Complexity can concretely affect the thinking of Economic mainstream and, in this sense, become a mature discipline. The large availability of datasets (the so-called Big Data Science) has recently revealed new promising path towards such perspectives and, as an example, we briefly discuss how archival data about export flows can be turned into a concrete tool to assess the competitiveness of countries and the complexity of products.

Keywords

  • Financial Market
  • Systemic Risk
  • Stylize Fact
  • Financial Time Series
  • Economic Mainstream

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-00023-7_8
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-00023-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

References

  1. Bouchaud J-P (2008) Economics needs a scientific revolution. Nature 455:1181

    ADS  CrossRef  Google Scholar 

  2. Tacchella A, Cristelli M, Caldarelli G, Gabrielli A, Pietronero L (2012) A new metrics for countries’ fitness and products’ complexity. Sci Rep Nat 2:723

    ADS  Google Scholar 

  3. Bouchaud J-P, Kockelkoren J, Potters M (2004) Random walks, liquidity molasses and critical response in financial markets. Quant Finance 6:115

    MathSciNet  CrossRef  Google Scholar 

  4. Lillo F, Farmer J (2004) The long memory of the efficient market. Stud Nonlinear Dyn Econom 8:1226

    Google Scholar 

  5. Farmer JD, Gerig A, Lillo F, Mike S (2006) Market efficiency and the long-memory of supply and demand: is price impact variable and permanent or fixed and temporary. Quant Finance 6:107

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Bouchaud J-P, Farmer JD, Lillo F (2008) How markets slowly digest changes in supply and demand. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  7. Chakraborti A, Toke IM, Patriarca M, Abergel F (2011) Econophysics review, II: agent-based models. Quant Finance 11:1013–1041. doi:10.1080/14697688.2010.539249

    MathSciNet  CrossRef  Google Scholar 

  8. Bouchaud J-P, Mezard M, Potters M (2002) Statistical properties of stock order books: empirical results and models. Quant Finance 2:251

    CrossRef  Google Scholar 

  9. Potters M, Bouchaud J-P (2003) More statistical properties of order books and price impact. Physica A 324:133

    ADS  CrossRef  MATH  Google Scholar 

  10. Wyart M, Bouchaud J-P, Kockelkoren J, Potters M, Vettorazzo M (2008) Relation between bid-ask spread, impact and volatility in order-driven markets. Quant Finance 8:41

    CrossRef  MATH  Google Scholar 

  11. Lillo F, Farmer JD, Mantegna RN (2002) Single curve collapse of price impact function for the New York stock exchange. arXiv:cond-mat/0207428

  12. Farmer JD, Gillemot L, Lillo F, Mike S, Sen A (2004) What really causes large price changes? Quant Finance 4:383

    CrossRef  Google Scholar 

  13. Lillo F, Farmer JD, Mantegna RN (2003) Master curve for price-impact function. Nature 421:129

    ADS  CrossRef  Google Scholar 

  14. Weber P, Rosenow B (2006) Large stock price changes: volume and liquidity. Quant Finance 6:7

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Cristelli M, Zaccaria A, Pietronero L (2011) Critical overview of agent-based models for economics. In: Proceedings of the school of physics E. Fermi, course CLXXVI, 2010, Varenna

    Google Scholar 

  16. Alfi V, Pietronero L, Zaccaria A (2009) Self-organization for the stylized facts and finite-size effects in a financial-market model. Europhys Lett 86:58003

    ADS  CrossRef  Google Scholar 

  17. Alfi V, Cristelli M, Pietronero L, Zaccaria A (2009) Minimal agent based model for financial markets, I: origin and self-organization of stylized facts. Eur Phys J B 67:385

    ADS  CrossRef  MATH  Google Scholar 

  18. Alfi V, Cristelli M, Pietronero L, Zaccaria A (2009) Minimal agent based model for financial markets, II: statistical properties of the linear and multiplicative dynamics. Eur Phys J B 67:399

    ADS  CrossRef  MATH  Google Scholar 

  19. Alfi V, Cristelli M, Pietronero L, Zaccaria A (2009) Mechanisms of self-organization and finite size effects in a minimal agent based model. J Stat Mech P03016

    Google Scholar 

  20. Samanidou E, Zschischang E, Stauffer D, Lux T (2007) Microscopic models of financial markets. Rep Prog Phys 70

    Google Scholar 

  21. Lux T, Marchesi M (1999) Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397:498

    ADS  CrossRef  Google Scholar 

  22. Giardina I, Bouchaud J-P (2003) Bubbles, crashes and intemittency in agent based market. Eur Phys J B 31:421

    MathSciNet  ADS  CrossRef  Google Scholar 

  23. Caldarelli G, Marsili M, Zhang Y-C (1997) A prototype model of stock exchange. Europhys Lett 40:479

    ADS  CrossRef  Google Scholar 

  24. Battiston S, Puliga M, Kaushik R, Tasca P, Caldarelli G. DebtRank: too central to fail? Financial networks, the FED and systemic risk. Nature 2:541

    Google Scholar 

  25. Golub T (2010) Counterpoint: data first. Nature 464:679

    ADS  CrossRef  Google Scholar 

  26. Evans J, Rzhetsky A (2010) Machine science. Science 329:399

    CrossRef  Google Scholar 

  27. Lazer D et al. (2009) Life in the network: the coming age of computational social science. Science 323:5915

    CrossRef  Google Scholar 

  28. Gonzalez M, Hidalgo C, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453:479

    CrossRef  Google Scholar 

  29. Choi H, Varian H (2009) Predicting the present with Google trends. Technical report

    Google Scholar 

  30. Bordino I, Battiston S, Caldarelli G, Matthieu M, Ukkonen A, Weber I (2011) PLoS ONE 7(10):e47278. doi:10.1371/journal.pone.0047278

    Google Scholar 

  31. Hidalgo C, Klinger B, Barabási AL, Hausmann R (2007) The product space conditions the development of nations. Science 317:482–487

    ADS  CrossRef  Google Scholar 

  32. Hidalgo C, Hausmann R (2009) The building blocks of economic complexity. Proc Natl Acad Sci USA 106:10570–10575

    ADS  CrossRef  Google Scholar 

  33. Caldarelli G, Cristelli M, Gabrielli A, Pietronero L, Scala A et al. (2012) A network analysis of countries’ export flows: firm grounds for the building blocks of the economy. PLoS ONE 7(10):e47278. doi:10.1371/journal.pone.0047278

    ADS  CrossRef  Google Scholar 

  34. Gaulier G, Zignago S (2010) Baci: international trade database at the product-level. http://www.cepii.fr/anglaisgraph/workpap/pdf/2010/wp2010-23.pdf

  35. Smith A (1776) The wealth of nations. Strahan and Cadell, London

    Google Scholar 

  36. Ricardo D (1817) On the principles of political economy and taxation. Murray, Sydney

    Google Scholar 

  37. Romer PM (1990) Endogenous technological change. J Polit Econ 98:71–102

    CrossRef  Google Scholar 

  38. Grossman GM, Helpman E (1991) Quality ladders in the theory of growth. Rev Econ Stud 58:43–61

    CrossRef  Google Scholar 

  39. Flam H, Flanders MJ (1991) Heckscher-Ohlin trade theory. MIT Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

This work is support by Italian PNR project CRISIS-Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Cristelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cristelli, M., Tacchella, A., Pietronero, L. (2014). An Overview of the New Frontiers of Economic Complexity. In: Abergel, F., Aoyama, H., Chakrabarti, B., Chakraborti, A., Ghosh, A. (eds) Econophysics of Agent-Based Models. New Economic Windows. Springer, Cham. https://doi.org/10.1007/978-3-319-00023-7_8

Download citation