Skip to main content

Urn Model-Based Adaptive Multi-arm Clinical Trials: A Stochastic Approximation Approach

  • Conference paper
Econophysics of Agent-Based Models

Part of the book series: New Economic Windows ((NEW))

  • 1656 Accesses

Abstract

This paper presents the link between stochastic approximation and multi-arm clinical trials based on randomized urn models investigated in Bai et al. (J. Multivar. Anal. 81(1):1–18, 2002) where the urn updating depends on the past performances of the treatments. We reformulate the dynamics of the urn composition, the assigned treatments and the successes of assigned treatments as standard stochastic approximation (SA) algorithms with remainder. Then, we derive the a.s. convergence of the normalized procedure under less stringent assumptions by calling upon the ODE and a new asymptotic normality result (Central Limit Theorem CLT) by calling upon the SDE methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersena J, Fariesa D, Ramuraa R (1994) A randomized play-the-winner design for multi-arm clinical trials. Commun Stat, Theory Methods 23:309–323

    Article  Google Scholar 

  2. Athreya KB, Karlin S (1967) Limit theorems for the split times of branching processes. J Math Mech 17:257–277

    MathSciNet  MATH  Google Scholar 

  3. Athreya KB, Karlin S (1968) Embedding of urn schemes into continuous time Markov branching processes and related limit theorems. Ann Math Stat 39:1801–1817

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai Z-D, Hu F (1999) Asymptotic theorems for urn models with nonhomogeneous generating matrices. Stoch Process Appl 80(1):87–101

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai Z-D, Hu F (2005) Asymptotics in randomized urn models. Ann Appl Probab 15(1B):914–940

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai Z-D, Hu F, Shen L (2002) An adaptive design for multi-arm clinical trials. J Multivar Anal 81(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  7. Benaïm M (1999) Dynamics of stochastic approximation algorithms. In: Séminaire de probabilités, XXXIII. Lecture notes in mathematics, vol 1709. Springer, Berlin, pp 1–68

    Chapter  Google Scholar 

  8. Benveniste A, Métivier M, Priouret P (1990) Adaptive algorithms and stochastic approximations. Applications of mathematics (New York), vol 22. Springer, Berlin. Translated from the French by Stephen S. Wilson

    Book  MATH  Google Scholar 

  9. Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences. Classics in applied mathematics, vol 9. SIAM, Philadelphia. Revised reprint of the 1979 original

    Book  MATH  Google Scholar 

  10. Duflo M (1997) Random iterative models. Applications of mathematics (New York), vol 34. Springer, Berlin. Translated from the 1990 French original by Stephen S. Wilson and revised by the author

    Book  MATH  Google Scholar 

  11. Flournoy N, Rosenberger WF (eds) (1995) Adaptive designs. Institute of mathematical statistics lecture notes—monograph series, vol 25. Institute of Mathematical Statistics, Hayward. Papers from the Joint AMS-IMS-SIAM Summer conference held at Mt, Holyoke College, South Hadley, MA, 1992

    MATH  Google Scholar 

  12. Fort J-C, Pagès G (1996) Convergence of stochastic algorithms: from the Kushner-Clark theorem to the Lyapounov functional method. Adv Appl Probab 28(4):1072–1094

    Article  MATH  Google Scholar 

  13. Freedman DA (1965) Bernard Friedman’s urn. Ann Math Stat 36:956–970

    Article  MATH  Google Scholar 

  14. Gouet R (1993) Martingale functional central limit theorems for a generalized Pólya urn. Ann Probab 21(3):1624–1639

    Article  MathSciNet  MATH  Google Scholar 

  15. Janson S (2004) Functional limit theorems for multitype branching processes and generalized Pólya urns. Stoch Process Appl 110(2):177–245

    Article  MathSciNet  ADS  Google Scholar 

  16. Johnson NL, Kotz S (1977) Urn models and their application. Wiley, New York

    MATH  Google Scholar 

  17. Kushner HJ, Yin GG (2003) Stochastic approximation and recursive algorithms and applications 2nd edn. Applications of Mathematics (New York), vol 35. Springer, New York

    MATH  Google Scholar 

  18. Laruelle S, Pagès G (2013) Randomized urn models revisited using stochastic approximation. Ann Appl Probab 23(4):1409–1436. doi:10.1214/12-AAP875. Permanent link to this document: http://projecteuclid.org/euclid.aoap/1371834033

    Article  MathSciNet  MATH  Google Scholar 

  19. Pouyanne N (2008) An algebraic approach to Pólya processes. Ann Inst Henri Poincaré 44(2):293–323

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Rosenberger WF (1996) New directions in adaptive designs. Stat Sci 11(2):137–149

    Article  Google Scholar 

  21. Smythe RT (1996) Central limit theorems for urn models. Stoch Process Appl 65(1):115–137

    Article  MathSciNet  MATH  Google Scholar 

  22. Wei LJ (1979) The generalized Polya’s urn design for sequential medical trials. Ann Stat 7(2):291–296

    Article  MATH  Google Scholar 

  23. Zelen M (1969) Play the winner rule and the controlled clinical trial. J Am Stat Assoc 64:131–146

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Laruelle .

Editor information

Editors and Affiliations

Appendix: Basic Tools of Stochastic Approximation

Appendix: Basic Tools of Stochastic Approximation

Consider the following recursive procedure defined on a filtered probability space \((\varOmega,{\mathcal{A}},({\mathcal{F}}_{n})_{n\geq0},{\mathbb{P}})\)

$$ \forall n\ge n_0,\quad\theta_{n+1}= \theta_n-\gamma_{n+1}h(\theta _n)+ \gamma_{n+1} (\Delta M_{n+1}+r_{n+1} ), $$
(3.16)

where \(h:{\mathbb{R}}^{d}\rightarrow {\mathbb{R}}^{d}\) is a locally Lipschitz continuous function, \(\theta_{n_{0}}\) an \({\mathcal{F}}_{n_{0}}\)-measurable finite random vector and, for every nn 0, ΔM n+1 is an \({\mathcal{F}}_{n}\)-martingale increment and r n is an \({\mathcal{F}}_{n}\)-adapted remainder term.

Theorem 3.3

(A.s. Convergence with ODE Method, see e.g. [7, 8, 10, 12, 17])

Assume that h is locally Lipschitz, that

$$r_n\overset{a.s.}{\underset{n\rightarrow\infty}{\longrightarrow}}0 \quad\textit{and} \quad\sup_{n\geq n_0}{\mathbb{E}}\bigl[\Vert \Delta M_{n+1}\Vert ^2\,\big|\,{\mathcal{F}}_n \bigr]<+\infty\quad a.s., $$

and that (γ n ) n≥1 is a positive sequence satisfying

$$\sum_{n\geq1}\gamma_n=+\infty\quad \textit{and} \quad\sum_{n\geq1}\gamma _n^2<+ \infty. $$

Then the set Θ of its limiting values as n→+∞ is a.s. a compact connected set, stable by the flow of

$$\mathit{ODE}_h\equiv\dot{\theta}=-h(\theta). $$

Furthermore if θ Θ is a uniformly stable equilibrium on Θ of ODE h , then

$$\theta_n\overset{a.s.}{\underset{n\rightarrow\infty}{ \longrightarrow }}\theta^*. $$

Comments

By uniformly stable we mean that

$$\sup_{\theta\in\varTheta^{\infty}}\bigl \vert \theta(\theta_0,t)- \theta^*\bigr \vert \longrightarrow0\quad\mbox{as} \ t\rightarrow+\infty, $$

where \(\theta(\theta_{0},t)_{\theta_{0}\in\varTheta^{\infty},t\in {\mathbb{R}}_{+}}\) is the flow of ODE h on Θ .

Theorem 3.4

(Rate of Convergence see [10], Theorem 3.III.14, p.131 (for CLT see also e.g. [8, 17]))

Let θ be an equilibrium point of {h=0}. Assume that the function h is differentiable at θ and all the eigenvalues of Dh(θ ) have positive real parts. Assume that for some δ>0,

$$ \sup_{n\geq n_0}{\mathbb{E}}\bigl[\Vert \Delta M_{n+1}\Vert ^{2+\delta}\,\big|\,{\mathcal{F}}_n \bigr]<+\infty\quad \textit{a.s.}, \quad {\mathbb{E}}\bigl[\Delta M_{n+1}\Delta M_{n+1}^t \,\big|\,{\mathcal{F}}_n \bigr]\overset{a.s.}{\underset{n\rightarrow\infty}{ \longrightarrow}}\varGamma, $$
(3.17)

where Γ is a deterministic symmetric definite positive matrix and for an ϵ>0,

(3.18)

Specify the gain parameter sequence as follows: for every n≥1, \(\gamma_{n}=\frac{1}{n}\). If \(\varLambda:=\Re e(\lambda_{{\rm min}})>\frac {1}{2}\), where \(\lambda_{{\rm min}}\) denotes the eigenvalue of Dh(θ ) with the lowest real part, then, the above a.s. convergence is ruled on the convergence set {θ n θ } by the following Central Limit Theorem

$$\sqrt{n} \bigl(\theta_n-\theta^* \bigr)\overset{{\mathcal{L}}}{ \underset {n\rightarrow\infty}{\longrightarrow}} {\mathcal{N}} \biggl(0, \frac{\varSigma }{2\varLambda-1} \biggr) $$

with

$$\varSigma:= \int_0^{+\infty} \bigl(e^{- (Dh(\theta^*)-\frac {I_d}{2} )u} \bigr)^t\varGamma e^{- (Dh(\theta^*)-\frac {I_d}{2} )u}du. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Laruelle, S., Pagès, G. (2014). Urn Model-Based Adaptive Multi-arm Clinical Trials: A Stochastic Approximation Approach. In: Abergel, F., Aoyama, H., Chakrabarti, B., Chakraborti, A., Ghosh, A. (eds) Econophysics of Agent-Based Models. New Economic Windows. Springer, Cham. https://doi.org/10.1007/978-3-319-00023-7_3

Download citation

Publish with us

Policies and ethics