Ultrafast Nonlinear Optics pp 251-286 | Cite as
Utilising Ultrafast Lasers for Multiphoton Biomedical Imaging
- 3.8k Downloads
Abstract
This chapter covers the benefits and applications of ultrafast laser scanning microscopes from a biomedical perspective. The basic architecture of a laser microscope is discussed, including how to design a laser scanning system with lateral and axial control. Also investigated is the design of custom collection optics for optimizing the detection of emitted photons and maximizing that emitted fluorescence in the presence of photobleaching. In addition, this chapter addresses three techniques novel to the biomedical community. The first is the technique of temporal focusing and its application toward wide-field imaging and micromachining. Also investigated is the concept of photon counting in multiphoton microscopy and how this approach to imaging has become practical for everyday use. Finally, several different methods are revealed for implementing spectral imaging with a multiphoton microscope platform.
Keywords
Photon Counting Multiphoton Microscopy Pulse Amplifier Photon Counting System Laser ClockNotes
Acknowledgments
This work was funded by the National Institute of Biomedical Imaging and Bioengineering, Grant EB-003832.
References
- 1.W. Denk, K. Svoboda, Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997)CrossRefGoogle Scholar
- 2.J. Mertz, Nonlinear microscopy: new techniques and applications. Curr. Opin. Neurobiol. 14, 610–616 (2004)CrossRefGoogle Scholar
- 3.W.R. Zipfel, R.M. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003)CrossRefGoogle Scholar
- 4.K.E. Sheetz, J. Squier, Ultrafast optics: imaging and manipulating biological systems. J. Appl. Phys. 105, 051101 (2009)ADSCrossRefGoogle Scholar
- 5.P.S. Tsai, P. Blinder, B.J. Migliori, J. Neev, Y. Jin, J.A. Squier, D. Kleinfeld, Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems. Curr. Opin. Biotechnol. 20, 90–99 (2009)CrossRefGoogle Scholar
- 6.R. Carriles, D.N. Schafer, K.E. Sheetz, J.J. Field, R. Cisek, V. Barzda, A.W. Sylvester, J.A. Squier, Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev. Sci. Instrum. 80, 081101 (2009)ADSCrossRefGoogle Scholar
- 7.E.H.K. Stelzer, Chapter 9: The intermediate optical system of laser-scanning confocal microscopes, in Handbook of Biological Confocal Microscopy, ed. by J.B. Pawley, 3rd edn. (Springer, New York, 2006), pp. 207–220CrossRefGoogle Scholar
- 8.J. Bewersdorf, R. Pick, S.W. Hell, Multifocal multiphoton microscopy. Opt. Lett. 23, 655–657 (1998)ADSCrossRefGoogle Scholar
- 9.M. Straub, S.W. Hell, Multifocal multiphoton microscopy: a fast and efficient tool for 3-D fluorescence imaging. Bioimaging 6, 177–185 (1998)CrossRefGoogle Scholar
- 10.E.J. Botcherby, R. Juskaitis, M.J. Booth, T. Wilson, Aberration-free optical refocusing in high numerical aperture microscopy. Opt. Lett. 32, 2007–2009 (2007)ADSCrossRefGoogle Scholar
- 11.A.E. Conrady, Applied Optics and Optical Design (Dover Publications, New York, 1992)Google Scholar
- 12.J. Strong, Concepts of Classical Optics (Dover Publications, New York, 2004)zbMATHGoogle Scholar
- 13.G. Smith, Practical Computer-Aided Lens Design, 1st English edn. (Willmann-Bell, Richmond, 1998)Google Scholar
- 14.R. Kingslake, Optical System Design (Academic, New York, 1983)Google Scholar
- 15.L.C. Martin, Technical Optics, vol. 2, 2nd edn. (Sir Isaac Pitman & Sons, LTD, London, 1961)Google Scholar
- 16.J. Chaves, M. Collares-Pereira, Ideal concentrators with gaps. Appl. Opt. 41, 1267–1276 (2002)ADSCrossRefGoogle Scholar
- 17.R. Winston, Nonimaging Optics (Elsevier Academic Press, Burlington, 2005)Google Scholar
- 18.K.D. Sharma, Design of slide projector condenser: a new approach. Appl. Opt. 22, 3925 (1983)ADSCrossRefGoogle Scholar
- 19.L.V. Foster, Aspheric enlarging condenser. J. Opt. Soc. Am. 13, 631–634 (1926)ADSCrossRefGoogle Scholar
- 20.J. Geary, Introduction to Lens Design: With Practical ZEMAX Examples (Willmann-Bell, Richmond, 2002)Google Scholar
- 21.M. Müller, Introduction to Confocal Fluorescence Microscopy, 2nd edn. (SPIE Press, Washington, DC, 2006)Google Scholar
- 22.D. Soumpasis, Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys. J. 41, 95–97 (1983)ADSCrossRefGoogle Scholar
- 23.E. Sánchez, L. Novotny, G. Holtom, X. Xie, Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation. J. Phys. Chem. A 101, 7019–7023 (1997)CrossRefGoogle Scholar
- 24.G. Patterson, D. Piston, Photobleaching in two-photon excitation microscopy. Biophys. J. 78, 2159–2162 (2000)ADSCrossRefGoogle Scholar
- 25.N. Ji, J.C. Magee, E. Betzig, High-speed, low-photodamage nonlinear imaging using passive pulse splitters. Nat. Methods 5, 197–202 (2008)CrossRefGoogle Scholar
- 26.P. Xi, Y. Andegeko, L. Weisel, V. Lozovoy, M. Dantus, Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses. Opt. Commun. 281, 1841–1849 (2008)ADSCrossRefGoogle Scholar
- 27.G. Donnert, C. Eggeling, S.W. Hell, Major signal increase in fluorescence microscopy through dark-state relaxation. Nat. Methods 4, 81–86 (2007)CrossRefGoogle Scholar
- 28.H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, K. Midorikawa, Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses. Biochem. Biophys. Res. Commun. 311, 592–596 (2003)CrossRefGoogle Scholar
- 29.J.J. Field, R. Carriles, K.E. Sheetz, E.V. Chandler, E.E. Hoover, S.E. Tillo, T.E. Hughes, A.W. Sylvester, D. Kleinfeld, J.A. Squier, Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation. Opt. Express 18, 13661–13672 (2010)ADSCrossRefGoogle Scholar
- 30.C. Xu, W.R. Zipfel, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, New York, 2008)Google Scholar
- 31.C. Xu, W.W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B. 13, 481–491 (1996)ADSCrossRefGoogle Scholar
- 32.C. Bardeen, V. Yakovlev, J. Squier, K.R. Wilson, S. Carpenter, P. Weber, Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy. J. Biomed. Opt. 4, 362–367 (1999)ADSCrossRefGoogle Scholar
- 33.C. Eggeling, A. Volkmer, C.A.M. Seidel, Molecular photobleaching kinetics of rhodamine 6g by one- and two-photon induced confocal fluorescence microscopy. Chem. Phys. Chem. 6, 791–804 (2005)CrossRefGoogle Scholar
- 34.F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005)CrossRefGoogle Scholar
- 35.D. Oron, E. Tal, Y. Silberberg, Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005)ADSCrossRefGoogle Scholar
- 36.G. Zhu, J.v. Howe, M. Durst, W. Zipfel, C. Xu, Simultaneous spatial and temporal focusing of femtosecond pulses, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, pp. CWP1. Optical Society of America (2005)Google Scholar
- 37.M.E. Durst, G. Zhu, C. Xu, Simultaneous spatial and temporal focusing for axial scanning. Opt. Express 14, 12243–12254 (2006)ADSCrossRefGoogle Scholar
- 38.M.A. Coughlan, M. Plewicki, R.J. Levis, Parametric spatio-temporal control of focusing laser pulses. Opt. Express 17, 15808–15820 (2009)ADSCrossRefGoogle Scholar
- 39.H. Suchowski, D. Oron, Y. Silberberg, Generation of a dark nonlinear focus by spatio-temporal coherent control. Opt. Commun. 264, 482–487 (2006)ADSCrossRefGoogle Scholar
- 40.E. Papagiakoumou, V.D. Sars, V. Emiliani, D. Oron, Temporal focusing with spatially modulated excitation. Opt. Express 17, 5391–5401 (2009)ADSCrossRefGoogle Scholar
- 41.D.N. Vitek, D.E. Adams, A. Johnson, P.S. Tsai, S. Backus, C.G. Durfee, D. Kleinfeld, J.A. Squier, Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials. Opt. Express 18, 18086–18094 (2010)CrossRefGoogle Scholar
- 42.F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt. Lett. 35, 1106–1108 (2010)CrossRefGoogle Scholar
- 43.W.G. Wier, C.W. Balke, J.A. Michael, J.R.H. Mauban, A custom confocal and two-photon digital laser scanning microscope. Am. J. Physiol. Heart Circ. Physiol. 278, H2150–2156 (2000)Google Scholar
- 44.C. Buehler, K.H. Kim, U. Greuter, N. Schlumpf, P.T.C. So, Single-photon counting multicolor multiphoton fluorescence microscope. J. Fluoresc. 15, 41–51 (2005)CrossRefGoogle Scholar
- 45.J.B. Pawley, Chapter 2: Fundamental limits in confocal microscopy, in Handbook of Biological Confocal Microscopy, ed. by J.B. Pawley, 3rd edn. (Springer, New York, 2006), pp. 20–42CrossRefGoogle Scholar
- 46.J.D. Driscoll, A.Y. Shih, S. Iyengar, J.J. Field, G.A. White, J.A. Squire, G. Cauwenberghs, D. Kleinfeld, Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy. J. Neurophysiol. 105, 3106–3113 (2010)CrossRefGoogle Scholar
- 47.W. Becker, Chapter 2: Overview of photon counting techniques, in Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin/Heidelberg, 2005), pp. 11–25CrossRefGoogle Scholar
- 48.W. Amir, R. Carriles, E.E. Hoover, T.A. Planchon, C.G. Durfee, J.A. Squier, Simultaneous imaging of multiple focal planes using a two-photon scanning microscope. Opt. Lett. 32, 1731–1733 (2007)ADSCrossRefGoogle Scholar
- 49.B.R. Masters, P.T.C. So, E. Gratton, Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72, 2405–2412 (1997)ADSCrossRefGoogle Scholar
- 50.E. Hecht, Optics, 4th edn. (Addison Wesley, New York, 2002)Google Scholar
- 51.B.R. Masters, P.T.C. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, New York, 2008)Google Scholar
- 52.R.J. Bell, Introductory Fourier Transform Spectroscopy (Academic, London, 1972)Google Scholar
- 53.J.E. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, New York, 1979)Google Scholar
- 54.Y. Garini, M. Macville, S. Manoir, R.A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schrock, D. Cabib, T. Ried, Spectral karyotyping. Bioimaging 4, 65–72 (1996)CrossRefGoogle Scholar
- 55.H.R. Morris, C.C. Hoyt, P.J. Treado, Imaging spectrometers for fluorescence and raman microscopy: acousto-optic and liquid crystal tunable filters. Appl. Spectrosc. 48, 857–866 (1994)ADSCrossRefGoogle Scholar
- 56.E.S. Wachman, W. Niu, D.L. Farkas, Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution. Appl. Opt. 35, 5220–5226 (1996)ADSCrossRefGoogle Scholar
- 57.E.S. Wachman, W. Niu, D.L. Farkas, Aotf microscope for imaging with increased speed and spectral versatility. Biophys. J. 73, 1215–1222 (1997)CrossRefGoogle Scholar
- 58.M.J.E. Golay, Multi-slit spectroscopy. J. Opt. Soc. Am. 39, 437–444 (1949)ADSCrossRefGoogle Scholar