Utilising Ultrafast Lasers for Multiphoton Biomedical Imaging

Part of the Scottish Graduate Series book series (SGS)


This chapter covers the benefits and applications of ultrafast laser scanning microscopes from a biomedical perspective. The basic architecture of a laser microscope is discussed, including how to design a laser scanning system with lateral and axial control. Also investigated is the design of custom collection optics for optimizing the detection of emitted photons and maximizing that emitted fluorescence in the presence of photobleaching. In addition, this chapter addresses three techniques novel to the biomedical community. The first is the technique of temporal focusing and its application toward wide-field imaging and micromachining. Also investigated is the concept of photon counting in multiphoton microscopy and how this approach to imaging has become practical for everyday use. Finally, several different methods are revealed for implementing spectral imaging with a multiphoton microscope platform.


Photon Counting Multiphoton Microscopy Pulse Amplifier Photon Counting System Laser Clock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the National Institute of Biomedical Imaging and Bioengineering, Grant EB-003832.


  1. 1.
    W. Denk, K. Svoboda, Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997)CrossRefGoogle Scholar
  2. 2.
    J. Mertz, Nonlinear microscopy: new techniques and applications. Curr. Opin. Neurobiol. 14, 610–616 (2004)CrossRefGoogle Scholar
  3. 3.
    W.R. Zipfel, R.M. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003)CrossRefGoogle Scholar
  4. 4.
    K.E. Sheetz, J. Squier, Ultrafast optics: imaging and manipulating biological systems. J. Appl. Phys. 105, 051101 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    P.S. Tsai, P. Blinder, B.J. Migliori, J. Neev, Y. Jin, J.A. Squier, D. Kleinfeld, Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems. Curr. Opin. Biotechnol. 20, 90–99 (2009)CrossRefGoogle Scholar
  6. 6.
    R. Carriles, D.N. Schafer, K.E. Sheetz, J.J. Field, R. Cisek, V. Barzda, A.W. Sylvester, J.A. Squier, Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev. Sci. Instrum. 80, 081101 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    E.H.K. Stelzer, Chapter 9: The intermediate optical system of laser-scanning confocal microscopes, in Handbook of Biological Confocal Microscopy, ed. by J.B. Pawley, 3rd edn. (Springer, New York, 2006), pp. 207–220CrossRefGoogle Scholar
  8. 8.
    J. Bewersdorf, R. Pick, S.W. Hell, Multifocal multiphoton microscopy. Opt. Lett. 23, 655–657 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    M. Straub, S.W. Hell, Multifocal multiphoton microscopy: a fast and efficient tool for 3-D fluorescence imaging. Bioimaging 6, 177–185 (1998)CrossRefGoogle Scholar
  10. 10.
    E.J. Botcherby, R. Juskaitis, M.J. Booth, T. Wilson, Aberration-free optical refocusing in high numerical aperture microscopy. Opt. Lett. 32, 2007–2009 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    A.E. Conrady, Applied Optics and Optical Design (Dover Publications, New York, 1992)Google Scholar
  12. 12.
    J. Strong, Concepts of Classical Optics (Dover Publications, New York, 2004)zbMATHGoogle Scholar
  13. 13.
    G. Smith, Practical Computer-Aided Lens Design, 1st English edn. (Willmann-Bell, Richmond, 1998)Google Scholar
  14. 14.
    R. Kingslake, Optical System Design (Academic, New York, 1983)Google Scholar
  15. 15.
    L.C. Martin, Technical Optics, vol. 2, 2nd edn. (Sir Isaac Pitman & Sons, LTD, London, 1961)Google Scholar
  16. 16.
    J. Chaves, M. Collares-Pereira, Ideal concentrators with gaps. Appl. Opt. 41, 1267–1276 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    R. Winston, Nonimaging Optics (Elsevier Academic Press, Burlington, 2005)Google Scholar
  18. 18.
    K.D. Sharma, Design of slide projector condenser: a new approach. Appl. Opt. 22, 3925 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    L.V. Foster, Aspheric enlarging condenser. J. Opt. Soc. Am. 13, 631–634 (1926)ADSCrossRefGoogle Scholar
  20. 20.
    J. Geary, Introduction to Lens Design: With Practical ZEMAX Examples (Willmann-Bell, Richmond, 2002)Google Scholar
  21. 21.
    M. Müller, Introduction to Confocal Fluorescence Microscopy, 2nd edn. (SPIE Press, Washington, DC, 2006)Google Scholar
  22. 22.
    D. Soumpasis, Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys. J. 41, 95–97 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    E. Sánchez, L. Novotny, G. Holtom, X. Xie, Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation. J. Phys. Chem. A 101, 7019–7023 (1997)CrossRefGoogle Scholar
  24. 24.
    G. Patterson, D. Piston, Photobleaching in two-photon excitation microscopy. Biophys. J. 78, 2159–2162 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    N. Ji, J.C. Magee, E. Betzig, High-speed, low-photodamage nonlinear imaging using passive pulse splitters. Nat. Methods 5, 197–202 (2008)CrossRefGoogle Scholar
  26. 26.
    P. Xi, Y. Andegeko, L. Weisel, V. Lozovoy, M. Dantus, Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses. Opt. Commun. 281, 1841–1849 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    G. Donnert, C. Eggeling, S.W. Hell, Major signal increase in fluorescence microscopy through dark-state relaxation. Nat. Methods 4, 81–86 (2007)CrossRefGoogle Scholar
  28. 28.
    H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, K. Midorikawa, Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses. Biochem. Biophys. Res. Commun. 311, 592–596 (2003)CrossRefGoogle Scholar
  29. 29.
    J.J. Field, R. Carriles, K.E. Sheetz, E.V. Chandler, E.E. Hoover, S.E. Tillo, T.E. Hughes, A.W. Sylvester, D. Kleinfeld, J.A. Squier, Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation. Opt. Express 18, 13661–13672 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    C. Xu, W.R. Zipfel, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, New York, 2008)Google Scholar
  31. 31.
    C. Xu, W.W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B. 13, 481–491 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    C. Bardeen, V. Yakovlev, J. Squier, K.R. Wilson, S. Carpenter, P. Weber, Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy. J. Biomed. Opt. 4, 362–367 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    C. Eggeling, A. Volkmer, C.A.M. Seidel, Molecular photobleaching kinetics of rhodamine 6g by one- and two-photon induced confocal fluorescence microscopy. Chem. Phys. Chem. 6, 791–804 (2005)CrossRefGoogle Scholar
  34. 34.
    F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005)CrossRefGoogle Scholar
  35. 35.
    D. Oron, E. Tal, Y. Silberberg, Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    G. Zhu, J.v. Howe, M. Durst, W. Zipfel, C. Xu, Simultaneous spatial and temporal focusing of femtosecond pulses, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, pp. CWP1. Optical Society of America (2005)Google Scholar
  37. 37.
    M.E. Durst, G. Zhu, C. Xu, Simultaneous spatial and temporal focusing for axial scanning. Opt. Express 14, 12243–12254 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    M.A. Coughlan, M. Plewicki, R.J. Levis, Parametric spatio-temporal control of focusing laser pulses. Opt. Express 17, 15808–15820 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    H. Suchowski, D. Oron, Y. Silberberg, Generation of a dark nonlinear focus by spatio-temporal coherent control. Opt. Commun. 264, 482–487 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    E. Papagiakoumou, V.D. Sars, V. Emiliani, D. Oron, Temporal focusing with spatially modulated excitation. Opt. Express 17, 5391–5401 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    D.N. Vitek, D.E. Adams, A. Johnson, P.S. Tsai, S. Backus, C.G. Durfee, D. Kleinfeld, J.A. Squier, Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials. Opt. Express 18, 18086–18094 (2010)CrossRefGoogle Scholar
  42. 42.
    F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt. Lett. 35, 1106–1108 (2010)CrossRefGoogle Scholar
  43. 43.
    W.G. Wier, C.W. Balke, J.A. Michael, J.R.H. Mauban, A custom confocal and two-photon digital laser scanning microscope. Am. J. Physiol. Heart Circ. Physiol. 278, H2150–2156 (2000)Google Scholar
  44. 44.
    C. Buehler, K.H. Kim, U. Greuter, N. Schlumpf, P.T.C. So, Single-photon counting multicolor multiphoton fluorescence microscope. J. Fluoresc. 15, 41–51 (2005)CrossRefGoogle Scholar
  45. 45.
    J.B. Pawley, Chapter 2: Fundamental limits in confocal microscopy, in Handbook of Biological Confocal Microscopy, ed. by J.B. Pawley, 3rd edn. (Springer, New York, 2006), pp. 20–42CrossRefGoogle Scholar
  46. 46.
    J.D. Driscoll, A.Y. Shih, S. Iyengar, J.J. Field, G.A. White, J.A. Squire, G. Cauwenberghs, D. Kleinfeld, Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy. J. Neurophysiol. 105, 3106–3113 (2010)CrossRefGoogle Scholar
  47. 47.
    W. Becker, Chapter 2: Overview of photon counting techniques, in Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin/Heidelberg, 2005), pp. 11–25CrossRefGoogle Scholar
  48. 48.
    W. Amir, R. Carriles, E.E. Hoover, T.A. Planchon, C.G. Durfee, J.A. Squier, Simultaneous imaging of multiple focal planes using a two-photon scanning microscope. Opt. Lett. 32, 1731–1733 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    B.R. Masters, P.T.C. So, E. Gratton, Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72, 2405–2412 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    E. Hecht, Optics, 4th edn. (Addison Wesley, New York, 2002)Google Scholar
  51. 51.
    B.R. Masters, P.T.C. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, New York, 2008)Google Scholar
  52. 52.
    R.J. Bell, Introductory Fourier Transform Spectroscopy (Academic, London, 1972)Google Scholar
  53. 53.
    J.E. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, New York, 1979)Google Scholar
  54. 54.
    Y. Garini, M. Macville, S. Manoir, R.A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schrock, D. Cabib, T. Ried, Spectral karyotyping. Bioimaging 4, 65–72 (1996)CrossRefGoogle Scholar
  55. 55.
    H.R. Morris, C.C. Hoyt, P.J. Treado, Imaging spectrometers for fluorescence and raman microscopy: acousto-optic and liquid crystal tunable filters. Appl. Spectrosc. 48, 857–866 (1994)ADSCrossRefGoogle Scholar
  56. 56.
    E.S. Wachman, W. Niu, D.L. Farkas, Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution. Appl. Opt. 35, 5220–5226 (1996)ADSCrossRefGoogle Scholar
  57. 57.
    E.S. Wachman, W. Niu, D.L. Farkas, Aotf microscope for imaging with increased speed and spectral versatility. Biophys. J. 73, 1215–1222 (1997)CrossRefGoogle Scholar
  58. 58.
    M.J.E. Golay, Multi-slit spectroscopy. J. Opt. Soc. Am. 39, 437–444 (1949)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Center for Microintegrated Optics for Advanced Bioimaging and Control, Department of PhysicsColorado School of MinesGoldenUSA

Personalised recommendations