Skip to main content

Utilising Ultrafast Lasers for Multiphoton Biomedical Imaging

  • 3981 Accesses

Part of the Scottish Graduate Series book series (SGS)

Abstract

This chapter covers the benefits and applications of ultrafast laser scanning microscopes from a biomedical perspective. The basic architecture of a laser microscope is discussed, including how to design a laser scanning system with lateral and axial control. Also investigated is the design of custom collection optics for optimizing the detection of emitted photons and maximizing that emitted fluorescence in the presence of photobleaching. In addition, this chapter addresses three techniques novel to the biomedical community. The first is the technique of temporal focusing and its application toward wide-field imaging and micromachining. Also investigated is the concept of photon counting in multiphoton microscopy and how this approach to imaging has become practical for everyday use. Finally, several different methods are revealed for implementing spectral imaging with a multiphoton microscope platform.

Keywords

  • Photon Counting
  • Multiphoton Microscopy
  • Pulse Amplifier
  • Photon Counting System
  • Laser Clock

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-00017-6_11
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-00017-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8
Fig. 11.9
Fig. 11.10
Fig. 11.11
Fig. 11.12
Fig. 11.13
Fig. 11.14
Fig. 11.15
Fig. 11.16
Fig. 11.17
Fig. 11.18
Fig. 11.19

References

  1. W. Denk, K. Svoboda, Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997)

    CrossRef  Google Scholar 

  2. J. Mertz, Nonlinear microscopy: new techniques and applications. Curr. Opin. Neurobiol. 14, 610–616 (2004)

    CrossRef  Google Scholar 

  3. W.R. Zipfel, R.M. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003)

    CrossRef  Google Scholar 

  4. K.E. Sheetz, J. Squier, Ultrafast optics: imaging and manipulating biological systems. J. Appl. Phys. 105, 051101 (2009)

    ADS  CrossRef  Google Scholar 

  5. P.S. Tsai, P. Blinder, B.J. Migliori, J. Neev, Y. Jin, J.A. Squier, D. Kleinfeld, Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems. Curr. Opin. Biotechnol. 20, 90–99 (2009)

    CrossRef  Google Scholar 

  6. R. Carriles, D.N. Schafer, K.E. Sheetz, J.J. Field, R. Cisek, V. Barzda, A.W. Sylvester, J.A. Squier, Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev. Sci. Instrum. 80, 081101 (2009)

    ADS  CrossRef  Google Scholar 

  7. E.H.K. Stelzer, Chapter 9: The intermediate optical system of laser-scanning confocal microscopes, in Handbook of Biological Confocal Microscopy, ed. by J.B. Pawley, 3rd edn. (Springer, New York, 2006), pp. 207–220

    CrossRef  Google Scholar 

  8. J. Bewersdorf, R. Pick, S.W. Hell, Multifocal multiphoton microscopy. Opt. Lett. 23, 655–657 (1998)

    ADS  CrossRef  Google Scholar 

  9. M. Straub, S.W. Hell, Multifocal multiphoton microscopy: a fast and efficient tool for 3-D fluorescence imaging. Bioimaging 6, 177–185 (1998)

    CrossRef  Google Scholar 

  10. E.J. Botcherby, R. Juskaitis, M.J. Booth, T. Wilson, Aberration-free optical refocusing in high numerical aperture microscopy. Opt. Lett. 32, 2007–2009 (2007)

    ADS  CrossRef  Google Scholar 

  11. A.E. Conrady, Applied Optics and Optical Design (Dover Publications, New York, 1992)

    Google Scholar 

  12. J. Strong, Concepts of Classical Optics (Dover Publications, New York, 2004)

    MATH  Google Scholar 

  13. G. Smith, Practical Computer-Aided Lens Design, 1st English edn. (Willmann-Bell, Richmond, 1998)

    Google Scholar 

  14. R. Kingslake, Optical System Design (Academic, New York, 1983)

    Google Scholar 

  15. L.C. Martin, Technical Optics, vol. 2, 2nd edn. (Sir Isaac Pitman & Sons, LTD, London, 1961)

    Google Scholar 

  16. J. Chaves, M. Collares-Pereira, Ideal concentrators with gaps. Appl. Opt. 41, 1267–1276 (2002)

    ADS  CrossRef  Google Scholar 

  17. R. Winston, Nonimaging Optics (Elsevier Academic Press, Burlington, 2005)

    Google Scholar 

  18. K.D. Sharma, Design of slide projector condenser: a new approach. Appl. Opt. 22, 3925 (1983)

    ADS  CrossRef  Google Scholar 

  19. L.V. Foster, Aspheric enlarging condenser. J. Opt. Soc. Am. 13, 631–634 (1926)

    ADS  CrossRef  Google Scholar 

  20. J. Geary, Introduction to Lens Design: With Practical ZEMAX Examples (Willmann-Bell, Richmond, 2002)

    Google Scholar 

  21. M. Müller, Introduction to Confocal Fluorescence Microscopy, 2nd edn. (SPIE Press, Washington, DC, 2006)

    Google Scholar 

  22. D. Soumpasis, Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys. J. 41, 95–97 (1983)

    ADS  CrossRef  Google Scholar 

  23. E. Sánchez, L. Novotny, G. Holtom, X. Xie, Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation. J. Phys. Chem. A 101, 7019–7023 (1997)

    CrossRef  Google Scholar 

  24. G. Patterson, D. Piston, Photobleaching in two-photon excitation microscopy. Biophys. J. 78, 2159–2162 (2000)

    ADS  CrossRef  Google Scholar 

  25. N. Ji, J.C. Magee, E. Betzig, High-speed, low-photodamage nonlinear imaging using passive pulse splitters. Nat. Methods 5, 197–202 (2008)

    CrossRef  Google Scholar 

  26. P. Xi, Y. Andegeko, L. Weisel, V. Lozovoy, M. Dantus, Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses. Opt. Commun. 281, 1841–1849 (2008)

    ADS  CrossRef  Google Scholar 

  27. G. Donnert, C. Eggeling, S.W. Hell, Major signal increase in fluorescence microscopy through dark-state relaxation. Nat. Methods 4, 81–86 (2007)

    CrossRef  Google Scholar 

  28. H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, K. Midorikawa, Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses. Biochem. Biophys. Res. Commun. 311, 592–596 (2003)

    CrossRef  Google Scholar 

  29. J.J. Field, R. Carriles, K.E. Sheetz, E.V. Chandler, E.E. Hoover, S.E. Tillo, T.E. Hughes, A.W. Sylvester, D. Kleinfeld, J.A. Squier, Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation. Opt. Express 18, 13661–13672 (2010)

    ADS  CrossRef  Google Scholar 

  30. C. Xu, W.R. Zipfel, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, New York, 2008)

    Google Scholar 

  31. C. Xu, W.W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B. 13, 481–491 (1996)

    ADS  CrossRef  Google Scholar 

  32. C. Bardeen, V. Yakovlev, J. Squier, K.R. Wilson, S. Carpenter, P. Weber, Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy. J. Biomed. Opt. 4, 362–367 (1999)

    ADS  CrossRef  Google Scholar 

  33. C. Eggeling, A. Volkmer, C.A.M. Seidel, Molecular photobleaching kinetics of rhodamine 6g by one- and two-photon induced confocal fluorescence microscopy. Chem. Phys. Chem. 6, 791–804 (2005)

    CrossRef  Google Scholar 

  34. F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005)

    CrossRef  Google Scholar 

  35. D. Oron, E. Tal, Y. Silberberg, Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005)

    ADS  CrossRef  Google Scholar 

  36. G. Zhu, J.v. Howe, M. Durst, W. Zipfel, C. Xu, Simultaneous spatial and temporal focusing of femtosecond pulses, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, pp. CWP1. Optical Society of America (2005)

    Google Scholar 

  37. M.E. Durst, G. Zhu, C. Xu, Simultaneous spatial and temporal focusing for axial scanning. Opt. Express 14, 12243–12254 (2006)

    ADS  CrossRef  Google Scholar 

  38. M.A. Coughlan, M. Plewicki, R.J. Levis, Parametric spatio-temporal control of focusing laser pulses. Opt. Express 17, 15808–15820 (2009)

    ADS  CrossRef  Google Scholar 

  39. H. Suchowski, D. Oron, Y. Silberberg, Generation of a dark nonlinear focus by spatio-temporal coherent control. Opt. Commun. 264, 482–487 (2006)

    ADS  CrossRef  Google Scholar 

  40. E. Papagiakoumou, V.D. Sars, V. Emiliani, D. Oron, Temporal focusing with spatially modulated excitation. Opt. Express 17, 5391–5401 (2009)

    ADS  CrossRef  Google Scholar 

  41. D.N. Vitek, D.E. Adams, A. Johnson, P.S. Tsai, S. Backus, C.G. Durfee, D. Kleinfeld, J.A. Squier, Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials. Opt. Express 18, 18086–18094 (2010)

    CrossRef  Google Scholar 

  42. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt. Lett. 35, 1106–1108 (2010)

    CrossRef  Google Scholar 

  43. W.G. Wier, C.W. Balke, J.A. Michael, J.R.H. Mauban, A custom confocal and two-photon digital laser scanning microscope. Am. J. Physiol. Heart Circ. Physiol. 278, H2150–2156 (2000)

    Google Scholar 

  44. C. Buehler, K.H. Kim, U. Greuter, N. Schlumpf, P.T.C. So, Single-photon counting multicolor multiphoton fluorescence microscope. J. Fluoresc. 15, 41–51 (2005)

    CrossRef  Google Scholar 

  45. J.B. Pawley, Chapter 2: Fundamental limits in confocal microscopy, in Handbook of Biological Confocal Microscopy, ed. by J.B. Pawley, 3rd edn. (Springer, New York, 2006), pp. 20–42

    CrossRef  Google Scholar 

  46. J.D. Driscoll, A.Y. Shih, S. Iyengar, J.J. Field, G.A. White, J.A. Squire, G. Cauwenberghs, D. Kleinfeld, Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy. J. Neurophysiol. 105, 3106–3113 (2010)

    CrossRef  Google Scholar 

  47. W. Becker, Chapter 2: Overview of photon counting techniques, in Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin/Heidelberg, 2005), pp. 11–25

    CrossRef  Google Scholar 

  48. W. Amir, R. Carriles, E.E. Hoover, T.A. Planchon, C.G. Durfee, J.A. Squier, Simultaneous imaging of multiple focal planes using a two-photon scanning microscope. Opt. Lett. 32, 1731–1733 (2007)

    ADS  CrossRef  Google Scholar 

  49. B.R. Masters, P.T.C. So, E. Gratton, Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72, 2405–2412 (1997)

    ADS  CrossRef  Google Scholar 

  50. E. Hecht, Optics, 4th edn. (Addison Wesley, New York, 2002)

    Google Scholar 

  51. B.R. Masters, P.T.C. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, New York, 2008)

    Google Scholar 

  52. R.J. Bell, Introductory Fourier Transform Spectroscopy (Academic, London, 1972)

    Google Scholar 

  53. J.E. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, New York, 1979)

    Google Scholar 

  54. Y. Garini, M. Macville, S. Manoir, R.A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Schrock, D. Cabib, T. Ried, Spectral karyotyping. Bioimaging 4, 65–72 (1996)

    CrossRef  Google Scholar 

  55. H.R. Morris, C.C. Hoyt, P.J. Treado, Imaging spectrometers for fluorescence and raman microscopy: acousto-optic and liquid crystal tunable filters. Appl. Spectrosc. 48, 857–866 (1994)

    ADS  CrossRef  Google Scholar 

  56. E.S. Wachman, W. Niu, D.L. Farkas, Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution. Appl. Opt. 35, 5220–5226 (1996)

    ADS  CrossRef  Google Scholar 

  57. E.S. Wachman, W. Niu, D.L. Farkas, Aotf microscope for imaging with increased speed and spectral versatility. Biophys. J. 73, 1215–1222 (1997)

    CrossRef  Google Scholar 

  58. M.J.E. Golay, Multi-slit spectroscopy. J. Opt. Soc. Am. 39, 437–444 (1949)

    ADS  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Institute of Biomedical Imaging and Bioengineering, Grant EB-003832.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erich E. Hoover or Jeff A. Squier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoover, E.E., Chandler, E.V., Field, J.J., Vitek, D.N., Young, M.D., Squier, J.A. (2013). Utilising Ultrafast Lasers for Multiphoton Biomedical Imaging. In: Thomson, R., Leburn, C., Reid, D. (eds) Ultrafast Nonlinear Optics. Scottish Graduate Series. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00017-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00017-6_11

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00016-9

  • Online ISBN: 978-3-319-00017-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)