Towards an understanding of the psychostimulant action of amphetamine and cocaine

  • René Weissensteiner
  • Thomas Steinkellner
  • Andreas Jurik
  • Simon Bulling
  • Walter Sandtner
  • Oliver Kudlacek
  • Michael Freissmuth
  • Gerhard F. Ecker
  • Harald H. Sitte

Abstract

Cocaine and amphetamine are psychostimulant drugs that are illicitly used; they affect sensory perception by targeting the neurotransmitter: sodium symporters (NSS) at the synapses between neurons. They both increase the concentration of the neurotransmitter in the synaptic cleft but by different means.

The physiological role of NSS is the reuptake of their endogenous substrate. For this task, they exploit the pre-existing sodium-gradient across the cellular membrane that is maintained by the activity of the sodium:potassium pump. This reuptake process terminates synaptic transmission because the neurotransmitter is removed from the synaptic cleft — and its action on pre- and postsynaptic receptor molecules is stopped.

Amphetamines induce the reverse operation of distinct NSS family members, whereas cocaine merely inhibits the same transporters and thereby blocks the reuptake of neurotransmitter. These effects, although completely different in molecular mechanism, lead to an increase in the synaptic concentration of non-exocytotically released neurotransmitters. While these actions have long been appreciated, the underlying mechanistic details have been surprisingly difficult to understand. The advent of a crystal structure of a prokaryotic NSS protein and the concomitant development of homology models for eukaryotic NSS family members generated novel insights into the structure-function relationships of this clinically relevant class of transporters. Ultimately, we hope to understand the effects of amphetamines and cocaine on a molecular level to elucidate their profound effects on sensory perception.

Keywords

Dopamine Transporter Sympathomimetic Amine Neurotransmitter Transporter Reverse Transport Psychostimulant Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amara SG, Kuhar MJ (1993) Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16: 73–93PubMedCrossRefGoogle Scholar
  2. Amara SG, Sonders MS (1998) Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend 51: 87–96PubMedCrossRefGoogle Scholar
  3. Axelrod J, Whitby LG, Hertting G (1961) Effect of psychotropic drugs on the uptake of 3H-Norepinephrine by tissues. Science 133: 383–384PubMedCrossRefGoogle Scholar
  4. Beuming T, Kniazeff J, Bergmann ML, Shi L, Gracia L, Raniszewska K, Newman AH, Javitch JA, Weinstein H, Gether U, Loland CJ (2008) The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat Neurosci 11: 780–789PubMedCrossRefGoogle Scholar
  5. Beuming T, Shi L, Javitch JA, Weinstein H (2006) A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/ Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol Pharmacol 70: 1630–1642PubMedCrossRefGoogle Scholar
  6. Biel JH, Bopp BA (1978) Amphetamines: structure-activity relationships. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology: psychostimulants. pp 1–40, Plenum, New YorkGoogle Scholar
  7. Blakely RD, Berson HE, Fremeau-RTJ, Caron MG, Peek MM, Prince HK, Bradley CC (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 354: 66–70PubMedCrossRefGoogle Scholar
  8. Bönisch H (1984) The transport of (+)-amphetamine by the neuronal noradrenaline carrier. Naunyn Schmiedebergs Arch Pharmacol 327: 267–272PubMedCrossRefGoogle Scholar
  9. Bönisch H (1986) The role of co-transported sodium in the effect of indirectly acting sympathomimetic amines. Naunyn Schmiedebergs Arch Pharmacol 332: 135–141PubMedCrossRefGoogle Scholar
  10. Bönisch H, Trendelenburg U (1989) The mechanism of action of indirectly acting sympathomimetic amines. In: Trendelenburg U, Weiner N (eds) Handbook of Experimental Pharmacology: Catecholamines. pp 247–277, Springer, Berlin, Hamburg, New YorkGoogle Scholar
  11. Bruss M, Hammermann R, Brimijoin S, Bonisch H (1995) Antipeptide antibodies confirm the topology of the human norepinephrine transporter. J Biol Chem 270: 9197–9201PubMedCrossRefGoogle Scholar
  12. Burn JH, Rand MJ (1958) The action of sympathomimetic amines in animals treated with reserpine. J Physiol 144: 314–336PubMedGoogle Scholar
  13. Carvelli L, McDonald PW, Blakely RD, DeFelice LJ (2004) Dopamine transporters depolarize neurons by a channel mechanism. Proc Natl Acad Sci U S A 101: 16046–16051PubMedCrossRefGoogle Scholar
  14. Chen N, Reith ME (2000) Structure and function of the dopamine transporter. Eur J Pharmacol 405: 329–339PubMedCrossRefGoogle Scholar
  15. Chen R, Furman CA, Zhang M, Kim MN, Gereau RW, Leitges M, Gnegy ME (2009) Protein kinase Cbeta is a critical regulator of dopamine transporter trafficking and regulates the behavioral response to amphetamine in mice. J Pharmacol Exp Ther 328: 912–920PubMedCrossRefGoogle Scholar
  16. Cinquanta M, Ratovitski T, Crespi D, Gobbi M, Mennini T, Simantov R (1997) Carrier-mediated serotonin release induced by d-fenfluramine: studies with human neuroblastoma cells transfected with a rat serotonin transporter. Neuropharmacology 36: 803–809PubMedCrossRefGoogle Scholar
  17. Davis ME, Patrick RL (1990) Diacylglycerol-induced stimulation of neurotransmitter release from rat brain striatal synaptosomes. J Neurochem 54: 662–668PubMedCrossRefGoogle Scholar
  18. Desai RI, Kopajtic TA, Koffarnus M, Newman AH, Katz JL (2005) Identification of a dopamine transporter ligand that blocks the stimulant effects of cocaine. J Neurosci 25: 1889–1893PubMedCrossRefGoogle Scholar
  19. Egana LA, Cuevas RA, Baust TB, Parra LA, Leak RK, Hochendoner S, Pena K, Quiroz M, Hong WC, Dorostkar MM, Janz R, Sitte HH, Torres GE (2009) Physical and functional interaction between the dopamine transporter and the synaptic vesicle protein synaptogyrin-3. J Neurosci 29: 4592–4604PubMedCrossRefGoogle Scholar
  20. Erreger K, Grewer C, Javitch JA, Galli A (2008) Currents in response to rapid concentration jumps of amphetamine uncover novel aspects of human dopamine transporter function. J Neurosci 28: 976–989PubMedCrossRefGoogle Scholar
  21. Eshleman AJ, Henningsen RA, Neve KA, Janowsky A (1994) Release of dopamine via the human transporter. Mol Pharmacol 45: 312–316PubMedGoogle Scholar
  22. Ewing AG, Stein TS, Lau YY (1992) Analytical chemistry in microenvironments: single nerve cells. Accts Chem Res 440–447Google Scholar
  23. Farhan H, Freissmuth M, Sitte HH (2006) Oligomerization of neurotransmitter transporters: a ticket from the endoplasmic reticulum to the plasma membrane. Handb Exp Pharmacol 233–249Google Scholar
  24. Farhan H, Korkhov VM, Paulitschke V, Dorostkar MM, Scholze P, Kudlacek O, Freissmuth M, Sitte HH (2004) two discontinuous segments in the carboxy terminus are required for membrane targeting of the rat GABA transporter-1 (GAT1). J Biol Chem 279: 28 553–28 563CrossRefGoogle Scholar
  25. Farhan H, Reiterer V, Korkhov VM, Schmid JA, Freissmuth M, Sitte HH (2007) concentrative export from the endoplasmic reticulum of the gamma-aminobutyric acid transporter 1 requires binding to SEC24D. J Biol Chem 282: 7679–7689PubMedCrossRefGoogle Scholar
  26. Farhan H, Reiterer V, Kriz A, Hauri HP, Pavelka M, Sitte HH, Freissmuth M (2008) Signal-dependent export of GABA transporter 1 from the ER-golgi intermediate compartment is specified by a Cterminal motif. J Cell Sci 121: 753–761PubMedCrossRefGoogle Scholar
  27. Fischer JF, Cho AK (1979) Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J Pharmacol Exp Ther 208: 203–209PubMedGoogle Scholar
  28. Fishkes H, Rudnick G (1982) Bioenergetics of serotonin transport by membrane vesicles derived from platelet dense granules. J Biol Chem 257: 5671–5677PubMedGoogle Scholar
  29. Fjorback AW, Pla P, Muller HK, Wiborg O, Saudou F, Nyengaard JR (2009) Serotonin transporter oligomerization documented in rn46 a cells and neurons by sensitized acceptor emission FRET and fluorescence lifetime imaging microscopy. Biochem Biophys Res Commun 380: 724–728PubMedCrossRefGoogle Scholar
  30. Fleckenstein A, Burn JH (1953) The effect of denervation on the action of sympathomimetic amines on the nictitating membrane. Br J Pharmacol Chemother 8: 69–78PubMedCrossRefGoogle Scholar
  31. Fog JU, Khoshbouei H, Holy M, Owens WA, Vaegter CB, Sen N, Nikandrova Y, Bowton E, McMahon DG, Colbran R J, Daws L C, Sitte HH, Javitch JA, Galli A, Gether U (2006) Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51: 417–429PubMedCrossRefGoogle Scholar
  32. Forrest LR, Zhang YW, Jacobs MT, Gesmonde J, Xie L, Honig BH, Rudnick G (2008) Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci USA 105: 10 338–10 343CrossRefGoogle Scholar
  33. Foster JD, Pananusorn B, Vaughan RA (2002) Dopamine transporters are phosphorylated on N-terminal serines in rat striatum. J Biol Chem 277: 25 178–25 186CrossRefGoogle Scholar
  34. Furchgott RF, Kirpekar SM, Rieker M, Schwab A (1963) Actions and interactions of norepinephrine, tyramine and cocaine on aortic strips of rabbit and left atria of guinea pig and cat. J Pharmacol Exp Ther 142: 39–58PubMedGoogle Scholar
  35. Giambalvo CT (1992 a) Protein kinase C and dopamine transport-1. effects of amphetamine in vivo. Neuropharmacology 31: 1201–1210PubMedCrossRefGoogle Scholar
  36. Giambalvo CT (1992 b) Protein kinase C and dopamine transport-2. effects of amphetamine in vitro. Neuropharmacology 31: 1211–1222PubMedCrossRefGoogle Scholar
  37. Giambalvo CT (2003) Differential effects of amphetamine transport vs. dopamine reverse transport on particulate pkc activity in striatal synaptoneurosomes. Synapse 49: 125–133PubMedCrossRefGoogle Scholar
  38. Giros B, el Mestikawy S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295: 149–154PubMedCrossRefGoogle Scholar
  39. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379: 606–612PubMedCrossRefGoogle Scholar
  40. Glowinski J, Axelrod J (1965) Effect of drugs on the uptake, release, and metabolism of H3-norepinephrine in the rat brain. J Pharmacol Exp Ther 149: 43–49PubMedGoogle Scholar
  41. Gnegy ME (2003) the effect of phosphorylation on amphetamine-mediated outward transport. Eur J Pharmacol 479: 83–91PubMedCrossRefGoogle Scholar
  42. Gnegy ME, Khoshbouei H, Berg K A, Javitch JA, Clarke WP, Zhang M, Galli A (2004) Intracellular Ca2+ regulates amphetamine-induced dopamine efflux and currents mediated by the human dopamine transporter. Mol Pharmacol 66: 137–143PubMedCrossRefGoogle Scholar
  43. Gobbi M, Funicello M, Gerstbrein K, Holy M, Moya PR, Sotomayor R, Forray MI, Gysling K, Paluzzi S, Bonanno G, Reyes-Parada M, Sitte HH, Mennini T (2008) N,N-dimethyl-thioamphetamine and methyl-thioamphetamine, two non-neurotoxic substrates of 5-HT transporters, have scant in vitro efficacy for the induction of transportermediated 5-HT release and currents. J Neurochem 105: 1770–1780PubMedCrossRefGoogle Scholar
  44. Gobbi M, Mennini T, Garattini S (1997) Mechanism of neurotransmitter release induced by amphetamine derivatives: pharmacological and toxicological aspects. Current Topics in Pharmacology 3: 217–227Google Scholar
  45. Gobbi M, Moia M, Pirona L, Ceglia I, Reyes-Parada M, Scorza C, Mennini T (2002) p-methylthioamphetamine and 1-(m-chlorophenyl)piperazine, two non-neurotoxic 5-HT releasers in vivo, differ from neurotoxic amphetamine derivatives in their mode of action at 5-HT nerve endings in vitro. J Neurochem 82: 1435–1443PubMedCrossRefGoogle Scholar
  46. Gorentla BK, Moritz AE, Foster JD, Vaughan RA (2009) Proline-directed phosphorylation of the dopamine transporter N-terminal domain. Biochemistry 48: 1067–1076PubMedCrossRefGoogle Scholar
  47. Granas C, Ferrer J, Loland CJ, Javitch JA, Gether U (2003) N-terminal truncation of the dopamine transporter abolishes phorbol ester-and substance P receptor-stimulated phosphorylation without impairing transporter internalization. J Biol Chem 278: 4990–5000PubMedCrossRefGoogle Scholar
  48. Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI (1990) Cloning and expression of a rat brain GABA Transporter. Science 249: 1303–1306PubMedCrossRefGoogle Scholar
  49. Hastrup H, Karlin A, Javitch JA (2001) Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment. Proc Natl Acad Sci U S A 98: 10 055–10 060CrossRefGoogle Scholar
  50. Hilgemann DW, Lu CC (1999) GAT1 (GABA:Na+:Cl-) cotransport function. database reconstruction with an alternating access model. J Gen Physiol 114: 459–475PubMedCrossRefGoogle Scholar
  51. Huang X, Zhan CG (2007) How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation. Biophys J 93: 3627–3639PubMedCrossRefGoogle Scholar
  52. Humphreys CJ, Wall SC, Rudnick G (1994) Ligand binding to the serotonin transporter: equilibria, kinetics, and ion dependence. Biochemistry 33: 9118–9125PubMedCrossRefGoogle Scholar
  53. Indarte M, Madura JD, Surratt CK (2008) Dopamine transporter comparative molecular modeling and binding site prediction using the LeuT(aa) leucine transporter as a template. Proteins 70: 1033–1046PubMedCrossRefGoogle Scholar
  54. Iversen L (2000) Neurotransmitter transporters: fruitful targets for cns drug discovery. Mol Psychiatry 5: 357–362PubMedCrossRefGoogle Scholar
  55. Iversen LL (1971) Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol 41: 571–591PubMedCrossRefGoogle Scholar
  56. Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211: 969–970PubMedCrossRefGoogle Scholar
  57. Javitch JA, Blaustein RO, Snyder SH (1984) [3H]Mazindol binding associated with neuronal dopamine and norepinephrine uptake sites. Mol Pharmacol 26: 35–44PubMedGoogle Scholar
  58. Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 — tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82: 2173–2177PubMedCrossRefGoogle Scholar
  59. Jess U, Betz H, Schloss P (1996) The membranebound rat serotonin transporter, SERT1, is an oligomeric protein. FEBS Lett 394: 44–46PubMedCrossRefGoogle Scholar
  60. Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18: 1979–1986PubMedGoogle Scholar
  61. Jones SR, Joseph JD, Barak LS, Caron MG, Wightman RM (1999) Dopamine neuronal transport kinetics and effects of amphetamine. J Neurochem 73: 2406–2414PubMedCrossRefGoogle Scholar
  62. Jorgensen AM, Tagmose L, Jorgensen AM, Topiol S, Sabio M, Gundertofte K, Bogeso KP, Peters GH (2007) Homology modeling of the serotonin transporter: insights into the primary escitalopram-binding site. ChemMedChem 2: 815–826PubMedCrossRefGoogle Scholar
  63. Just H, Sitte HH, Schmid JA, Freissmuth M, Kudlacek O (2004) Identification of an additional interaction domain in transmembrane domains 11 and 12 that supports oligomer formation in the human serotonin transporter. J Biol Chem 279: 6650–6657PubMedCrossRefGoogle Scholar
  64. Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A (2005) Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci U S A 102: 3495–3500PubMedCrossRefGoogle Scholar
  65. Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162: 1403–1413PubMedCrossRefGoogle Scholar
  66. Kantor L, Gnegy ME (1998) Protein kinase c inhibitors block amphetamine-mediated dopamine release in rat striatal slices. J Pharmacol Exp Ther 284: 592–598PubMedGoogle Scholar
  67. Kantor L, Hewlett GH, Gnegy ME (1999) Enhanced amphetamine-and k+-mediated dopamine release in rat striatum after repeated amphetamine: differential requirements for Ca2+-and calmodulin-dependent phosphorylation and synaptic vesicles. J Neurosci 19: 3801–3808PubMedGoogle Scholar
  68. Kantor L, Hewlett G H, Park YH, Richardson-Burns SM, Mellon MJ, Gnegy ME (2001) Protein kinase C and intracellular calcium are required for amphetamine-mediated dopamine release via the norepinephrine transporter in undifferentiated PC12 cells. J Pharmacol Exp Ther 297: 1016–1024PubMedGoogle Scholar
  69. Kazanietz MG, Caloca MJ, Aizman O, Nowicki S (2001) Phosphorylation of the catalytic subunit of rat renal Na+, K+-ATPase by classical PKC isoforms. Arch Biochem Biophys 388: 74–80PubMedCrossRefGoogle Scholar
  70. Khoshbouei H, Sen N, Guptaroy B, Johnson L, Lund D, Gnegy ME, Galli A, Javitch JA (2004) N-terminal phosphorylation of the dopamine transporter is required for amphetamine-induced efflux. PLoS Biol 2:E78PubMedCrossRefGoogle Scholar
  71. Khoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A (2003) Amphetamine-induced dopamine efflux. a voltage-sensitive and intracellular Na+-dependent mechanism. J Biol Chem 278: 12 070–12 077CrossRefGoogle Scholar
  72. Kilic F, Rudnick G (2000) Oligomerization of serotonin tranporter and its functional consequences. Proc Natl Acad Sci U SA 97: 106–3111CrossRefGoogle Scholar
  73. Kocabas AM, Rudnick G, Kilic F (2003) Functional consequences of homo-but not hetero-oligomerization between transporters for the biogenic amine neurotransmitters. J Neurochem 85: 1513–1520PubMedCrossRefGoogle Scholar
  74. Korkhov VM, Holy M, Freissmuth M, Sitte HH (2006) The conserved glutamate (Glu136) in transmem-brane domain 2 of the serotonin transporter is required for the conformational switch in the transport cycle. J Biol Chem 281: 13439–13448PubMedCrossRefGoogle Scholar
  75. Kuhar MJ, Ritz MC, Boja JW (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14: 299–302PubMedCrossRefGoogle Scholar
  76. L’hirondel M, Cheramy A, Godeheu G, Glowinski J (1995) Effects of arachidonic acid on dopamine synthesis, spontaneous release, and uptake in striatal synaptosomes from the rat. J Neurochem 64: 1406–1409CrossRefGoogle Scholar
  77. Langston JW, Irwin I, Langston EB, Forno LS (1984) 1-methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci Lett 48: 87–92PubMedCrossRefGoogle Scholar
  78. Loland CJ, Desai RI, Zou MF, Cao J, Grundt P, Gerstbrein K, Sitte HH, Newman AH, Katz JL, Gether U (2008) Relationship between conformational changes in the dopamine transporter and cocaine-like subjective effects of uptake inhibitors. Mol Pharmacol 73: 813–823PubMedCrossRefGoogle Scholar
  79. Lu CC, Hilgemann DW (1999a) GAT1 (GABA:Na+:Cl-) cotransport function. kinetic studies in giant xenopus oocyte membrane patches. J Gen Physiol 114: 445–457PubMedCrossRefGoogle Scholar
  80. Lu CC, Hilgemann DW (1999 b) GAT1 (GABA:Na+:Cl-) cotransport function. steady state studies in giant xenopus oocyte membrane patches. J Gen Physiol 114: 429–444PubMedCrossRefGoogle Scholar
  81. Martell BA, Orson FM, Poling J, Mitchell E, Rossen RD, Gardner T, Kosten TR (2009) Cocaine vaccine for the treatment of cocaine dependence in methadone-maintained patients: a randomized, double-blind, placebo-controlled efficacy trial. Arch Gen Psychiatry 66: 1116–1123PubMedCrossRefGoogle Scholar
  82. Masson J, Sagne C, Hamon M, el Mestikawy S (1999) Neurotransmitter transporters in the central nervous system. Pharmacol Rev 51: 439–464PubMedGoogle Scholar
  83. Mazei-Robinson MS, Blakely RD (2006) ADHD and the dopamine transporter: are there reasons to pay attention? Handb Exp Pharmacol 373–415Google Scholar
  84. Mazei-Robison MS, Bowton E, Holy M, Schmudermaier M, Freissmuth M, Sitte HH, Galli A, Blakely RD (2008) Anomalous dopamine release associated with a human dopamine transporter coding variant. J Neurosci 28: 7040–7046PubMedCrossRefGoogle Scholar
  85. Meinild AK, Sitte HH, Gether U (2004) Zinc Potentiates an Uncoupled Anion Conductance Associated With the Dopamine Transporter. J Biol Chem 279: 49 671–49 679.CrossRefGoogle Scholar
  86. Moron JA, Zakharova I, Ferrer J V, Merrill GA, Hope B, Lafer EM, Lin ZC, Wang J B, Javitch JA, Galli A, Shippenberg TS (2003) Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport apacity. J Neurosci 23: 8480–8488PubMedGoogle Scholar
  87. Nelson N (1998) The family of Na+/Cl-neurotransmitter transporters. J Neurochem 71: 1785–1803PubMedCrossRefGoogle Scholar
  88. Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8: 1445–1449PubMedCrossRefGoogle Scholar
  89. Nirenberg MJ, Chan J, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1997) Immunogold localization of the dopamine transporter: an ultrastructural study of the rat ventral tegmental area. J Neurosci 17: 5255–5262PubMedGoogle Scholar
  90. Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine-and antidepressantsensitive human noradrenaline transporter. Nature 350: 350–354PubMedCrossRefGoogle Scholar
  91. Pifl C, Agneter E, Drobny H, Reither H, Singer EA (1997) Induction by low Na+ or Cl-of cocaine sensitive carrier-mediated efflux of amines from cells transfected with the cloned human catecholamine transporters. Br J Pharmacol 121: 205–212PubMedCrossRefGoogle Scholar
  92. Pifl C, Agneter E, Drobny H, Sitte HH, Singer EA (1999) Amphetamine reverses or blocks the operation of the human noradrenaline transporter depending on its concentration: superfusion studies on transfected cells. Neuropharmacology 38: 157–165PubMedCrossRefGoogle Scholar
  93. Pifl C, Drobny H, Reither H, Hornykiewicz O, Singer EA (1995) Mechanism of the dopamine-releasing actions of amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol Pharmacol 47: 368–373PubMedGoogle Scholar
  94. Pifl C, Singer EA (1999) Ion dependence of carriermediated release in dopamine or norepinephrine transporter-transfected cells questions the hypothesis of facilitated exchange diffusion. Mol Pharmacol 56: 1047–1054PubMedGoogle Scholar
  95. Pozzan T, Gatti G, Dozio N, Vicentini LM, Meldolesi J (1984) Ca2+-dependent and-independent release of neurotransmitters from PC12 cells: a role for protein kinase C activation? J Cell Biol 99: 628–638PubMedCrossRefGoogle Scholar
  96. Ramamoorthy S, Blakely RD (1999) Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285: 763–766PubMedCrossRefGoogle Scholar
  97. Ramamoorthy S, Samuvel DJ, Buck ER, Rudnick G, Jayanthi LD (2007) Phosphorylation of threonine residue 276 is required for acute regulation of serotonin transporter by cyclic GMP. J Biol Chem 282: 11 639–11 647Google Scholar
  98. Robertson SD, Matthies HJ, Galli A (2009) A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol Neurobiol 39: 73–80PubMedCrossRefGoogle Scholar
  99. Ross SB, Renyi AL (1966) Uptake of some tritiated sympathomimetic amines by mouse brain cortex slices in vitro. Acta Pharmacol Toxicol (Copenh) 24: 297–309CrossRefGoogle Scholar
  100. Roux MJ, Supplisson S (2000) Neuronal and glial glycine transporters have different stoichiometries. Neuron 25: 373–383PubMedCrossRefGoogle Scholar
  101. Rudnick G (2006) Structure/function relationship in serotonin transporter. In: Sitte HH, Freissmuth M (eds) Neurotransmitter transporters pp 59–73, Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  102. Rudnick G, Clark J (1993) From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. Biochim Biophys Acta 1144: 249–263PubMedCrossRefGoogle Scholar
  103. Rudnick G, Wall SC (1992) p-chloroamphetamine induces serotonin release through serotonin transporters. Biochemistry 31: 6710–6718PubMedCrossRefGoogle Scholar
  104. Saier MH Jr., Tran CV, Barabote RD (2006) TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186PubMedCrossRefGoogle Scholar
  105. Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, Lamb ME, Leeb-Lundberg LM, Carvelli L, Javitch JA, Galli A (2000) Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci USA 97: 6850–6855PubMedCrossRefGoogle Scholar
  106. Schmid JA, Scholze P, Kudlacek O, Freissmuth M, Singer EA, Sitte HH (2001) Oligomerization of the human serotonin transporter and of the rat GABA transporter 1 visualized by fluorescence resonance energy transfer microscopy in living cells. J Biol Chem 276: 3805–3810PubMedCrossRefGoogle Scholar
  107. Scholze P, Freissmuth M, Sitte HH (2002 a) Mutations within an intramembrane leucine heptad repeat disrupt oligomer formation of the rat GABA transporter 1. J Biol Chem 277: 43 682–43 690Google Scholar
  108. Scholze P, Norregaard L, Singer EA, Freissmuth M, Gether U, Sitte HH (2002 b) The role of zinc ions in reverse transport mediated by monoamine Transporters. J Biol Chem 277: 21 505–21 513Google Scholar
  109. Scholze P, Zwach J, Kattinger A, Pifl C, Singer EA, Sitte HH (2000) Transporter-Mediated Release: A superfusion study on human embryonic kidney cells stably expressing the human serotonin transporter. J Pharmacol Exp Ther 293: 870–878PubMedGoogle Scholar
  110. Seidel S, Singer EA, Just H, Farhan H, Scholze P, Kudlacek O, Holy M, Koppatz K, Krivanek P, Freissmuth M, Sitte HH (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67: 140–151PubMedGoogle Scholar
  111. Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33: 639–677PubMedCrossRefGoogle Scholar
  112. Sen N, Shi L, Beuming T, Weinstein H, Javitch JA (2005) A pincer-like configuration of TM2 in the human dopamine transporter is responsible for indirect effects on cocaine binding. Neuropharmacology 49: 780–790PubMedCrossRefGoogle Scholar
  113. Shi L, Quick M, Zhao Y, Weinstein H, Javitch JA (2008) The mechanism of a neurotransmitter: sodium symporter-inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell 30: 667–677PubMedCrossRefGoogle Scholar
  114. Singh SK (2008) LeuT: a prokaryotic stepping stone on the way to a eukaryotic neurotransmitter transporter structure. Channels (Austin) 2: 380–389CrossRefGoogle Scholar
  115. Singh SK, Piscitelli CL, Yamashita A, Gouaux E (2008) A competitive inhibitor traps leut in an open-toout conformation. Science 322: 1655–1661PubMedCrossRefGoogle Scholar
  116. Sitte HH, Farhan H, Javitch JA (2004) Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. Mol Interv 4: 38–47PubMedCrossRefGoogle Scholar
  117. Sitte HH, Freissmuth M (2003) Oligomer formation by Na+-Cl-coupled neurotransmitter transporters. Eur J Pharmacol 479: 229–236PubMedCrossRefGoogle Scholar
  118. Sitte HH, Hiptmair B, Zwach J, Pifl C, Singer EA, Scholze P (2001) Quantitative analysis of inward and outward transport rates in cells stably expressing the cloned human serotonin transporter: inconsistencies with the hypothesis of facilitated exchange diffusion. Mol Pharmacol 59: 1129–1137PubMedGoogle Scholar
  119. Sitte HH, Huck S, Reither H, Boehm S, Singer EA, Pifl C (1998) Carrier-mediated release, transport rates, and charge transfer induced by amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. J Neurochem 71: 1289–1297PubMedCrossRefGoogle Scholar
  120. Sitte HH, Scholze P, Schloss P, Pifl C, Singer EA (2000) Characterization of carrier-mediated release in human embryonic kidney 293 cells stably expressing the rat serotonin transporter: a superfusion study. J Neurochem 74: 1317–1324PubMedCrossRefGoogle Scholar
  121. Sitte HH, Singer EA, Scholze P (2002) Bi-directional transport of gaba in human embryonic kidney (HEK-293) cells stably expressing the rat GABA Transporter GAT-1. Br J Pharmacol 135: 93–102PubMedCrossRefGoogle Scholar
  122. Sorkina T, Doolen S, Galperin E, Zahniser NR, Sorkin A (2003) Oligomerization of dopamine transporters visualized in living cells by FRET microscopy. J Biol Chem 278: 28 274–28 283CrossRefGoogle Scholar
  123. Sulzer D, Sonders M S, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75: 406–433PubMedCrossRefGoogle Scholar
  124. Torres GE, Carneiro A, Seamans K, Fiorentini C, Sweeney A, Yao WD, Caron MG (2003 a) Oligomerization and trafficking of the human dopamine transporter. mutational analysis identifies critical domains important for the functional expression of the transporter. J Biol Chem 278: 2731–2739PubMedCrossRefGoogle Scholar
  125. Torres GE, Gainetdinov RR, Caron MG (2003 b) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4: 13–25PubMedCrossRefGoogle Scholar
  126. Trendelenburg U, Langeloh A, Bönisch H (1987) Mechanism of action of indirectly acting sympathomimetic amines. Blood Vessels 24: 261–270PubMedGoogle Scholar
  127. Wall SC, Gu H, Rudnick G (1995) Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux. Mol Pharmacol 47: 544–550PubMedGoogle Scholar
  128. Wang D, Deken SL, Whitworth TL, Quick MW (2003) Syntaxin 1A inhibits GABA flux, efflux, and exchange mediated by the rat brain GABA transporter GAT1. Mol Pharmacol 64: 905–913PubMedCrossRefGoogle Scholar
  129. Wolfel R, Graefe KH (1992) Evidence for various tryptamines and related compounds acting as substrates of the platelet 5-hydroxytryptamine transporter. Naunyn Schmiedebergs Arch Pharmacol 345: 129–136PubMedCrossRefGoogle Scholar
  130. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437: 215–223PubMedCrossRefGoogle Scholar
  131. Zaczek R, Culp S, De SE (1991) Interactions of [3H] amphetamine with rat brain synaptosomes. II. active transport. J Pharmacol Exp Ther 257: 830–835PubMedGoogle Scholar
  132. Zhu CB, Carneiro AM, Dostmann WR, Hewlett WA, Blakely RD (2005) P38 MAPK activation elevates serotonin transport activity via a trafficking-independent, protein phosphatase 2A-dependent process. J Biol Chem 280: 15649–15658PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  • René Weissensteiner
    • 1
  • Thomas Steinkellner
    • 2
  • Andreas Jurik
    • 1
  • Simon Bulling
    • 2
  • Walter Sandtner
    • 2
  • Oliver Kudlacek
    • 2
  • Michael Freissmuth
    • 2
  • Gerhard F. Ecker
    • 1
  • Harald H. Sitte
    • 2
  1. 1.Life Sciences Department of Medical / Pharmaceutical ChemistryUniversity of ViennaViennaAustria
  2. 2.Center of Biomolecular Medicine and Pharmacology Institute of PharmacologyMedical University of ViennaViennaAustria

Personalised recommendations