Barth FG (1978) Slit sense organs: “Strain gauges” in the arachnid exoskeleton. Symposium Zool Soc London 42: 439–448
Google Scholar
Bassett DK, Carton AG, Montgomery JC (2006) Flowing water decreases hydrodynamic signal detection in a fish with an epidermal lateral-line system. Marine Freshwater Res 57: 611–617
CrossRef
Google Scholar
Beal DN, Hover FS, Triantafyllou MS, Liao JC, Lauder GV (2006) Passive propulsion in vortex wakes. J Fluid Mech 549: 385–402
CrossRef
Google Scholar
Blaxter JHS, Gray JAB, Best ABC (1983) Structure and development of the free neuromasts and the lateral line system of the herring. J Mar Biol Ass UK 63: 247–260
CrossRef
Google Scholar
Bleckmann H (1993) Role of the lateral line and fish behavior. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman and Hall, London New York Tokyo, pp 201–246
CrossRef
Google Scholar
Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progress in zoology. Vol 41. Gustav Fischer, Stuttgart Jena New York, pp 1–115
Google Scholar
Bleckmann H (2006) The lateral line system of fish. In: Hara T, Zielinski B (eds) Sensory systems neuroscience: Fish physiology, Vol 25. Elsevier, Amsterdam, pp 411–453
CrossRef
Google Scholar
Bleckmann H (2007) Peripheral and central processing of lateral line information. J Comp Physiol A 194:145–158
CrossRef
Google Scholar
Bleckmann H, Münz H (1988) The anatomy and physiology of lateral line mechanoreceptors in teleosts with multiple lateral lines. In: Barth FG (ed) Verh Dtsch Zool Ges 81. Gustav Fischer, Stuttgart, pp 288
Google Scholar
Bleckmann H, Tittel G, Blübaum-Gronau E (1989) The lateral line system of surface-feeding fish: Anatomy, physiology, and behavior. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 501–526
CrossRef
Google Scholar
Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus. Naturwissenschaften 68: 624–625
CrossRef
Google Scholar
Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172:115–128
CrossRef
Google Scholar
Bleckmann H, Zelick R (2009) Lateral line system of fish. Integrative Zool 4:13–25
CrossRef
Google Scholar
Briicker C, Bauer D, Chaves H (2007) Dynamic response of micro-pillar sensors measuring fluctuating wall-shear-stress. Exp Fluids 42:737–749
CrossRef
Google Scholar
Burt de Perera T (2004) Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Animal Behav 68: 291–295
CrossRef
Google Scholar
Campenhausen Cv, Riess I, Weissert R (1981) Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143: 369–374
CrossRef
Google Scholar
Carton AG, Montgomery JC (2002) Responses of lateral line receptors to water flow in the Antarctic notothenoid, Trematomus bernacchii. Polar Biol 25: 789–793
Google Scholar
Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209: 327–342
PubMed
CrossRef
Google Scholar
Chagnaud BP, Bleckmann H, Hofmann M (2007a) Kármán vortex street detection by the lateral line. J Comp Physiol A 193: 753–763
CrossRef
Google Scholar
Chagnaud BP, Bleckmann H, Hofmann MH (2008a) Lateral line nerve fibers do not respond to bulk water flow direction. J Zool 111: 204–217
CrossRef
Google Scholar
Chagnaud BP, Brücker C, Hofmann MH, Bleckmann H (2008b) Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations. J Neurosci 28:4479–4487
PubMed
CrossRef
CAS
Google Scholar
Chagnaud BP, Hofmann MH, Mogdans J (2007b) Responses to dipole stimuli of anterior lateral line nerve fibres in goldfish, Carassius auratus, under still and running water conditions. J Comp Physiol A 193: 249–263
CrossRef
Google Scholar
Chaves LM, Hodos W (1998) Color reversal-learning deficits after tectofugal pathway lesions in the pigeon telencephalon. Behav Brain Res 90: 1–12
PubMed
CrossRef
CAS
Google Scholar
Coombs S, Finneran JJ, Conley RA (2000) Hydrodynamic imaging formation by the lateral line system of the Lake Michigan mottled sculpin, Cottus bairdi. Phil Trans R Soc B 355:1111–1114
PubMed
CrossRef
CAS
Google Scholar
Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–593
CrossRef
Google Scholar
Coombs S, Montgomery JC (1999) The enigmatic lateral line. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 319–362
CrossRef
Google Scholar
Curcic-Blake B, van Netten SM (2006) Source localization encoding in the fish lateral line. J Exp Biol 209:1548–1559
PubMed
CrossRef
Google Scholar
Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc Lond B 218:1–26
PubMed
CrossRef
CAS
Google Scholar
Denton EJ, Gray JAB (1988a) Mechanical factors in the excitation of lateral line canals. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 595–617
CrossRef
Google Scholar
Denton EJ, Gray JAB (1988b) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 595–617
CrossRef
Google Scholar
Denton EJ, Gray JAB (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 229–246
CrossRef
Google Scholar
Ebert J, Müller S, Westhoff G (2007) Behavioral examination of the infrared sensitivity of ball on. J Zool 272: 340–347
CrossRef
Google Scholar
Engelmann J, Bleckmann H (2004) Coding of lateral line stimuli in the goldfish midbrain in still-and running water. J Zool 107:135–151
CrossRef
Google Scholar
Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still-and running water. J Comp Physiol A 188: 513–526
CrossRef
CAS
Google Scholar
Fan Z, Chen J, Zou J, Bullen D, Liu C, Delcomyn F (2002) Design and fabrication of artifical lateral line flow sensors. J Micromech Microeng 12: 655–661
CrossRef
Google Scholar
Flock A (1971a) Sensory transduction in hair cells. I. Principles of receptor physiology. In: Loewenstein WR (ed) Handbook of sensory physiology. Springer, New York, pp 396–441
Google Scholar
Flock A (1971b) The lateral line organ mechanoreceptors. In: Hoar WS, Randall DJ (eds) Fish physiology, Vol. 5. Academic Press, New York, pp 241–263
Google Scholar
Flock A, Wersäll J (1962) A study of the orientation of sensory hairs of the receptor cells in the lateral line organ of a fish with special reference to the function of the receptors. J Cell Biol 15: 19–27
PubMed
CrossRef
CAS
Google Scholar
Goulet J, Engelmann J, Chagnaud BP, Franosch J-MP, Suttner MD, van Hemmen JL (2008) Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A 194:1–17
CrossRef
Google Scholar
Hoin-Radkovski I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fish Pantodon buchholzi (Pantodontidae). Animal Behav 32: 840–851
CrossRef
Google Scholar
Humphrey JAC, Barth FG (2008) Medium flow-sensing hairs: Biomechanics and models. In: Casas J, Simpson J (eds) Advances in insect physiology, Vol 34. Academic Press, London, pp 1–80
Google Scholar
Jakubowski M (1967) Cutaneous sense organs of fishes. VIII. The structure of the system of lateral-line canal organs in the Percidae. Acta Biol Cracov Ser Zool 10: 69–81
Google Scholar
Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130
CrossRef
Google Scholar
Kanter MJ, Coombs S (2003) Rheotaxis and prey detection in uniform currents by lake michigan mottled sculpin (Cottus bairdii). J Exp Biol 206: 59–70
PubMed
CrossRef
Google Scholar
Konishi M (1986) Centrally synthesized maps of sensory space. Trends Neurosci 100:163–168
CrossRef
Google Scholar
Kroese ABA, Schellart NAM (1987) Evidence for velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J Physiol 393: 29
Google Scholar
Kroese ABA, Schellart NAM (1992) Velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J Neurophysiol 68: 2212–2221
PubMed
CAS
Google Scholar
Kröther S, Bleckmann H, Mogdans J (2004) Effects of running water on brainstem latetral line responses in trout, Oncorhynchus mykiss, to sinusoidal wave stimuli. J Comp Physiol A 190: 437–448
CrossRef
Google Scholar
Kröther S, Mogdans J, Bleckmann H (2002) Brain-stem lateral line responses to sinusoidal wave stimuli in still-and running water. J Exp Biol 205: 1471–1484
PubMed
Google Scholar
Künzel S (2009) Characterisation of brainstem lateral line neurons in goldfish, Carassius auratus: Frequency selectivity, spatial excitation patterns and flow sensitivity. PhD thesis, University of Bonn, Germany.
Google Scholar
Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Phil Trans R Soc Lond B 362:1973–1993
CrossRef
Google Scholar
Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) The Karman gait: Novel kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206:1059–1073
PubMed
CrossRef
Google Scholar
Lohmann KJ (2000) The neurobiology of magneto-reception in vertebrate animals. T Neurosci 23: 153–159
CrossRef
CAS
Google Scholar
Manger PR, Pettigrew JD (1995) Electroreception and the feeding behaviour of platypus (Ornithorhynchus anatius: Monotremata: Mammalia). Phil Trans R Soc London 347: 359–381
CrossRef
Google Scholar
McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 341–364
CrossRef
Google Scholar
Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving object. J Comp Physiol A 182: 659–676
CrossRef
Google Scholar
Mogdans J, Geisen S (2009) Responses of the goldfish head lateral line to moving objects. J Comp Physiol A 195:151–165
CrossRef
Google Scholar
Mogdans J, Krother S, Engelmann J (2004) Neurobiology of the fish lateral line: Adaptations for the detection of hydrodynamic stimuli in running water. In: von der Emde G, Mogdans J, Kapoor GB (eds) The senses of fish. Adaptations for the reception of natural stimuli. Narosa Publishing House, New Delhi, pp 265–287
CrossRef
Google Scholar
Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389: 960–963
CrossRef
CAS
Google Scholar
Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movements of planctonic prey. Science 235: 195–196
PubMed
CrossRef
CAS
Google Scholar
Müller HM, Fleck A, Bleckmann H (1996) The responses of central octavolateralis cells to moving sources. J Comp Physiol A 179:455–471
CrossRef
Google Scholar
Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157: 555–568
CrossRef
Google Scholar
Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 285–298
CrossRef
Google Scholar
Nelson JS (1984) Fishes of the world. John Wiley and Sons, New York
Google Scholar
Peleshanko S, Julian MD, Ornatska M, McConney ME, LeMieux MC, Chen N, Tucker C, Yang Y, Liu C, Humphrey JAC, Tsukruk VV (2007) Hydrogel-Encapsulated microfabricated hair cells mimicking fish cupula neuromast. Adv Mater 19: 2903–2909
CrossRef
CAS
Google Scholar
Pillapakkam SB, Barbier C, Humphrey AC, Rüter A, Otto B, Bleckmann H, Hanke W (2007) Experimental and numerical investigation of a fish artificial lateral line canal. In: 5th International Symposium on turbulence and shear flow phenomena. TU München, pp 1–6
Google Scholar
Plachta D, Hanke W, Bleckmann H (2003) A hydrodynamic topographic map and two hydrodynamic subsystems in a vertebrate brain. J Exp Biol 206: 3479–3486
PubMed
CrossRef
Google Scholar
Plachta D, Mogdans J, Bleckmann H (1999) Responses of midbrain lateral line units of the goldfish, Carassius auratus, to constant-amplitude and amplitude modulated water wave stimuli. J Comp Physiol A 185:405–417
CrossRef
Google Scholar
Pohlmann K (2003) When the night comes: Non-visual predator-prey interactions in fish. Dissertation. University of Konstanz, Konstanz
Google Scholar
Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207: 2971–2978
PubMed
CrossRef
Google Scholar
Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: The nocturnal predatory strategy of piscivorous catfish. Proc Nat Acad Sci 98: 7371–7374
PubMed
CrossRef
CAS
Google Scholar
Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34: 110–131
PubMed
CrossRef
CAS
Google Scholar
Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 459–480
CrossRef
Google Scholar
Sand O, Bleckmann H (2008) Orientation to auditory and lateral line stimuli. In: Webb JF, Fay RR, Popper AN (eds) Fish bioacoustics, vol 22. Springer, New York, pp 183–232
CrossRef
Google Scholar
Sandini G, Metta G (2003) Retina-like sensors: motivations, technology and applications. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engineering. Springer Verlag, Wien New York, pp 251–262
CrossRef
Google Scholar
Sarpeshkar R (2003) The silocon cochlea. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engineering. Springer, Wien New York.
Google Scholar
Schemmel C (1967) Vergleichende Untersuchungen an den Hautsinnesorganen ober-und unterirdisch lebender Astyanax-Formen. Z Morph Tiere 61: 255–316
CrossRef
Google Scholar
Schmitz A, Bleckmann H, Mogdans J (2008) Organization of the superficial neuromast system in goldfish, Carassius auratus. J Morphol 269: 751–761
PubMed
CrossRef
Google Scholar
Schmitz A, Sehrbrock A, Schmitz H (2007) The analysis of the mechanosensory origin of the infrared sensilla in Melanophila acuminata (Coleoptera; Bupestridae) adduces new insight into the transduction mechanism. Arth Struct Develop 36: 291–303
CrossRef
Google Scholar
Schwartz E (1970) Ferntastsinnesorgane von Oberflachenfischen. Z Morphol Tiere 67:40–57
Google Scholar
Settles GS, Kester DA, Dodson-Dreibelbis U (2003) The external aerodynamics of canine olfaction. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engeneering. Springer, Wien New York, pp 323–335
CrossRef
Google Scholar
Sutterlin AM, Waddy S (1975) Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). J Fish Res Bd. Canada 32: 2441–2446
CrossRef
Google Scholar
Teyke T (1989) Learning and remembering the environment in the blind cave fish Anoptichthys jordani. J Comp Physiol A164: 655–662
CrossRef
Google Scholar
Trump WJV, McHenry MJ (2008) The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). J Exp Biol 211: 2105–2115
PubMed
CrossRef
Google Scholar
van Netten SM (2006) Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology. Biol Cybern 94: 67–85
PubMed
CrossRef
Google Scholar
van Netten SM, Khanna SM (1993) Mechanical demodulation of hydrodynamic stimuli performed by the lateral line organ. In: Allum JHJ, Allum-Mecklenburg DJ, Harris FP, Probst R (eds) Prog Brain Res. Elsevier, Amsterdam, pp45–51
Google Scholar
van Netten SM, Wiersinga-Post C (2002) Matched peripheral filtering in the lateral line organ and relation to temperature. Bioacoustics 12: 153–156
CrossRef
Google Scholar
Vogel D, Bleckmann H (2000) Behavioral discrimination of water motions caused by moving objects. J Comp Physiol A 186:1107–1117
PubMed
CrossRef
Google Scholar
Voigt R, Carton AG, Montgomery JC (2000) Responses of anterior lateral line afferent neurones to water flow. J Exp Biol 203: 2495–2502
PubMed
CAS
Google Scholar
von der Emde G (1990) Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii. J Comp Physiol A 167: 413–421
Google Scholar
von der Emde G, Bleckmann H (1992) Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii. J Comp Physiol A 171: 683–694
CrossRef
Google Scholar
Webb JF (1989) Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol 33: 34–53
PubMed
CrossRef
CAS
Google Scholar
Weber T, Bleckmann H, Miinz H (1991) Model experiments regarding the function of complex lateral line canals. In: Pfannenstiel H-D (ed) Verh Dtsch Zool Ges 84. Gustav Fischer, Stuttgart, pp 461–462
Google Scholar
Wehner R (1987) Matched filters — neural models of the external world. J Comp Physiol A 161: 511–531
CrossRef
Google Scholar
Wojtenek W, Mogdans J, Bleckmann H (1998) The responses of midbrain lateral line units of the goldfish Carassius auratus to moving objects. J Zool 101: 69–82
Google Scholar
Wullimann MF (1998) The central nervous system. In: Evans DH (ed) The physiology of fishes. CRC Press, New York, pp 245–282
Google Scholar
Yang Y, Chen J, Enge J, Pandya S, Chen N, Tucker C, Coombs S, Jones DL, Liu C (2006) Distant touch hydrodynamic imaging with an artificial lateral line. P Nat Acad Sci 103:18891–18895
CrossRef
CAS
Google Scholar