Skip to main content

Nature as a model for technical sensors

  • Chapter

Abstract

Nature has developed a stunning diversity of sensory systems. Humans rely mainly on visual information for object detection, discrimination and spatial orientation. In addition, they use acoustic, olfactory, and somatosensory cues. But even beyond these common sensory systems a large variety of highly specialized sensors have evolved in the animal kingdom. Examples include the infrared receptors of snakes and pyrophilous insects, the electroreceptors of fish, the magnetoreceptors of birds and the lateral line of fish and amphibians. This chapter deals with certain aspects of the detection and processing of hydrodynamic information in both natural and artificial lateral line systems. We show that the study of seemingly exotic sensory systems, such as the fish lateral line, can lead to discoveries that are useful for the construction of man-made sensors.

Keywords

  • Hair Cell
  • Lateral Line
  • Technical Sensor
  • Lateral Line Canal
  • Lateral Line Organ

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-211-99749-9_1
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-211-99749-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barth FG (1978) Slit sense organs: “Strain gauges” in the arachnid exoskeleton. Symposium Zool Soc London 42: 439–448

    Google Scholar 

  • Bassett DK, Carton AG, Montgomery JC (2006) Flowing water decreases hydrodynamic signal detection in a fish with an epidermal lateral-line system. Marine Freshwater Res 57: 611–617

    CrossRef  Google Scholar 

  • Beal DN, Hover FS, Triantafyllou MS, Liao JC, Lauder GV (2006) Passive propulsion in vortex wakes. J Fluid Mech 549: 385–402

    CrossRef  Google Scholar 

  • Blaxter JHS, Gray JAB, Best ABC (1983) Structure and development of the free neuromasts and the lateral line system of the herring. J Mar Biol Ass UK 63: 247–260

    CrossRef  Google Scholar 

  • Bleckmann H (1993) Role of the lateral line and fish behavior. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman and Hall, London New York Tokyo, pp 201–246

    CrossRef  Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progress in zoology. Vol 41. Gustav Fischer, Stuttgart Jena New York, pp 1–115

    Google Scholar 

  • Bleckmann H (2006) The lateral line system of fish. In: Hara T, Zielinski B (eds) Sensory systems neuroscience: Fish physiology, Vol 25. Elsevier, Amsterdam, pp 411–453

    CrossRef  Google Scholar 

  • Bleckmann H (2007) Peripheral and central processing of lateral line information. J Comp Physiol A 194:145–158

    CrossRef  Google Scholar 

  • Bleckmann H, Münz H (1988) The anatomy and physiology of lateral line mechanoreceptors in teleosts with multiple lateral lines. In: Barth FG (ed) Verh Dtsch Zool Ges 81. Gustav Fischer, Stuttgart, pp 288

    Google Scholar 

  • Bleckmann H, Tittel G, Blübaum-Gronau E (1989) The lateral line system of surface-feeding fish: Anatomy, physiology, and behavior. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 501–526

    CrossRef  Google Scholar 

  • Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus. Naturwissenschaften 68: 624–625

    CrossRef  Google Scholar 

  • Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172:115–128

    CrossRef  Google Scholar 

  • Bleckmann H, Zelick R (2009) Lateral line system of fish. Integrative Zool 4:13–25

    CrossRef  Google Scholar 

  • Briicker C, Bauer D, Chaves H (2007) Dynamic response of micro-pillar sensors measuring fluctuating wall-shear-stress. Exp Fluids 42:737–749

    CrossRef  Google Scholar 

  • Burt de Perera T (2004) Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Animal Behav 68: 291–295

    CrossRef  Google Scholar 

  • Campenhausen Cv, Riess I, Weissert R (1981) Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143: 369–374

    CrossRef  Google Scholar 

  • Carton AG, Montgomery JC (2002) Responses of lateral line receptors to water flow in the Antarctic notothenoid, Trematomus bernacchii. Polar Biol 25: 789–793

    Google Scholar 

  • Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209: 327–342

    PubMed  CrossRef  Google Scholar 

  • Chagnaud BP, Bleckmann H, Hofmann M (2007a) Kármán vortex street detection by the lateral line. J Comp Physiol A 193: 753–763

    CrossRef  Google Scholar 

  • Chagnaud BP, Bleckmann H, Hofmann MH (2008a) Lateral line nerve fibers do not respond to bulk water flow direction. J Zool 111: 204–217

    CrossRef  Google Scholar 

  • Chagnaud BP, Brücker C, Hofmann MH, Bleckmann H (2008b) Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations. J Neurosci 28:4479–4487

    PubMed  CrossRef  CAS  Google Scholar 

  • Chagnaud BP, Hofmann MH, Mogdans J (2007b) Responses to dipole stimuli of anterior lateral line nerve fibres in goldfish, Carassius auratus, under still and running water conditions. J Comp Physiol A 193: 249–263

    CrossRef  Google Scholar 

  • Chaves LM, Hodos W (1998) Color reversal-learning deficits after tectofugal pathway lesions in the pigeon telencephalon. Behav Brain Res 90: 1–12

    PubMed  CrossRef  CAS  Google Scholar 

  • Coombs S, Finneran JJ, Conley RA (2000) Hydrodynamic imaging formation by the lateral line system of the Lake Michigan mottled sculpin, Cottus bairdi. Phil Trans R Soc B 355:1111–1114

    PubMed  CrossRef  CAS  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–593

    CrossRef  Google Scholar 

  • Coombs S, Montgomery JC (1999) The enigmatic lateral line. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 319–362

    CrossRef  Google Scholar 

  • Curcic-Blake B, van Netten SM (2006) Source localization encoding in the fish lateral line. J Exp Biol 209:1548–1559

    PubMed  CrossRef  Google Scholar 

  • Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc Lond B 218:1–26

    PubMed  CrossRef  CAS  Google Scholar 

  • Denton EJ, Gray JAB (1988a) Mechanical factors in the excitation of lateral line canals. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 595–617

    CrossRef  Google Scholar 

  • Denton EJ, Gray JAB (1988b) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 595–617

    CrossRef  Google Scholar 

  • Denton EJ, Gray JAB (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 229–246

    CrossRef  Google Scholar 

  • Ebert J, Müller S, Westhoff G (2007) Behavioral examination of the infrared sensitivity of ball on. J Zool 272: 340–347

    CrossRef  Google Scholar 

  • Engelmann J, Bleckmann H (2004) Coding of lateral line stimuli in the goldfish midbrain in still-and running water. J Zool 107:135–151

    CrossRef  Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still-and running water. J Comp Physiol A 188: 513–526

    CrossRef  CAS  Google Scholar 

  • Fan Z, Chen J, Zou J, Bullen D, Liu C, Delcomyn F (2002) Design and fabrication of artifical lateral line flow sensors. J Micromech Microeng 12: 655–661

    CrossRef  Google Scholar 

  • Flock A (1971a) Sensory transduction in hair cells. I. Principles of receptor physiology. In: Loewenstein WR (ed) Handbook of sensory physiology. Springer, New York, pp 396–441

    Google Scholar 

  • Flock A (1971b) The lateral line organ mechanoreceptors. In: Hoar WS, Randall DJ (eds) Fish physiology, Vol. 5. Academic Press, New York, pp 241–263

    Google Scholar 

  • Flock A, Wersäll J (1962) A study of the orientation of sensory hairs of the receptor cells in the lateral line organ of a fish with special reference to the function of the receptors. J Cell Biol 15: 19–27

    PubMed  CrossRef  CAS  Google Scholar 

  • Goulet J, Engelmann J, Chagnaud BP, Franosch J-MP, Suttner MD, van Hemmen JL (2008) Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A 194:1–17

    CrossRef  Google Scholar 

  • Hoin-Radkovski I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fish Pantodon buchholzi (Pantodontidae). Animal Behav 32: 840–851

    CrossRef  Google Scholar 

  • Humphrey JAC, Barth FG (2008) Medium flow-sensing hairs: Biomechanics and models. In: Casas J, Simpson J (eds) Advances in insect physiology, Vol 34. Academic Press, London, pp 1–80

    Google Scholar 

  • Jakubowski M (1967) Cutaneous sense organs of fishes. VIII. The structure of the system of lateral-line canal organs in the Percidae. Acta Biol Cracov Ser Zool 10: 69–81

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130

    CrossRef  Google Scholar 

  • Kanter MJ, Coombs S (2003) Rheotaxis and prey detection in uniform currents by lake michigan mottled sculpin (Cottus bairdii). J Exp Biol 206: 59–70

    PubMed  CrossRef  Google Scholar 

  • Konishi M (1986) Centrally synthesized maps of sensory space. Trends Neurosci 100:163–168

    CrossRef  Google Scholar 

  • Kroese ABA, Schellart NAM (1987) Evidence for velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J Physiol 393: 29

    Google Scholar 

  • Kroese ABA, Schellart NAM (1992) Velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J Neurophysiol 68: 2212–2221

    PubMed  CAS  Google Scholar 

  • Kröther S, Bleckmann H, Mogdans J (2004) Effects of running water on brainstem latetral line responses in trout, Oncorhynchus mykiss, to sinusoidal wave stimuli. J Comp Physiol A 190: 437–448

    CrossRef  Google Scholar 

  • Kröther S, Mogdans J, Bleckmann H (2002) Brain-stem lateral line responses to sinusoidal wave stimuli in still-and running water. J Exp Biol 205: 1471–1484

    PubMed  Google Scholar 

  • Künzel S (2009) Characterisation of brainstem lateral line neurons in goldfish, Carassius auratus: Frequency selectivity, spatial excitation patterns and flow sensitivity. PhD thesis, University of Bonn, Germany.

    Google Scholar 

  • Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Phil Trans R Soc Lond B 362:1973–1993

    CrossRef  Google Scholar 

  • Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) The Karman gait: Novel kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206:1059–1073

    PubMed  CrossRef  Google Scholar 

  • Lohmann KJ (2000) The neurobiology of magneto-reception in vertebrate animals. T Neurosci 23: 153–159

    CrossRef  CAS  Google Scholar 

  • Manger PR, Pettigrew JD (1995) Electroreception and the feeding behaviour of platypus (Ornithorhynchus anatius: Monotremata: Mammalia). Phil Trans R Soc London 347: 359–381

    CrossRef  Google Scholar 

  • McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 341–364

    CrossRef  Google Scholar 

  • Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving object. J Comp Physiol A 182: 659–676

    CrossRef  Google Scholar 

  • Mogdans J, Geisen S (2009) Responses of the goldfish head lateral line to moving objects. J Comp Physiol A 195:151–165

    CrossRef  Google Scholar 

  • Mogdans J, Krother S, Engelmann J (2004) Neurobiology of the fish lateral line: Adaptations for the detection of hydrodynamic stimuli in running water. In: von der Emde G, Mogdans J, Kapoor GB (eds) The senses of fish. Adaptations for the reception of natural stimuli. Narosa Publishing House, New Delhi, pp 265–287

    CrossRef  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389: 960–963

    CrossRef  CAS  Google Scholar 

  • Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movements of planctonic prey. Science 235: 195–196

    PubMed  CrossRef  CAS  Google Scholar 

  • Müller HM, Fleck A, Bleckmann H (1996) The responses of central octavolateralis cells to moving sources. J Comp Physiol A 179:455–471

    CrossRef  Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157: 555–568

    CrossRef  Google Scholar 

  • Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 285–298

    CrossRef  Google Scholar 

  • Nelson JS (1984) Fishes of the world. John Wiley and Sons, New York

    Google Scholar 

  • Peleshanko S, Julian MD, Ornatska M, McConney ME, LeMieux MC, Chen N, Tucker C, Yang Y, Liu C, Humphrey JAC, Tsukruk VV (2007) Hydrogel-Encapsulated microfabricated hair cells mimicking fish cupula neuromast. Adv Mater 19: 2903–2909

    CrossRef  CAS  Google Scholar 

  • Pillapakkam SB, Barbier C, Humphrey AC, Rüter A, Otto B, Bleckmann H, Hanke W (2007) Experimental and numerical investigation of a fish artificial lateral line canal. In: 5th International Symposium on turbulence and shear flow phenomena. TU München, pp 1–6

    Google Scholar 

  • Plachta D, Hanke W, Bleckmann H (2003) A hydrodynamic topographic map and two hydrodynamic subsystems in a vertebrate brain. J Exp Biol 206: 3479–3486

    PubMed  CrossRef  Google Scholar 

  • Plachta D, Mogdans J, Bleckmann H (1999) Responses of midbrain lateral line units of the goldfish, Carassius auratus, to constant-amplitude and amplitude modulated water wave stimuli. J Comp Physiol A 185:405–417

    CrossRef  Google Scholar 

  • Pohlmann K (2003) When the night comes: Non-visual predator-prey interactions in fish. Dissertation. University of Konstanz, Konstanz

    Google Scholar 

  • Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207: 2971–2978

    PubMed  CrossRef  Google Scholar 

  • Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: The nocturnal predatory strategy of piscivorous catfish. Proc Nat Acad Sci 98: 7371–7374

    PubMed  CrossRef  CAS  Google Scholar 

  • Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34: 110–131

    PubMed  CrossRef  CAS  Google Scholar 

  • Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 459–480

    CrossRef  Google Scholar 

  • Sand O, Bleckmann H (2008) Orientation to auditory and lateral line stimuli. In: Webb JF, Fay RR, Popper AN (eds) Fish bioacoustics, vol 22. Springer, New York, pp 183–232

    CrossRef  Google Scholar 

  • Sandini G, Metta G (2003) Retina-like sensors: motivations, technology and applications. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engineering. Springer Verlag, Wien New York, pp 251–262

    CrossRef  Google Scholar 

  • Sarpeshkar R (2003) The silocon cochlea. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engineering. Springer, Wien New York.

    Google Scholar 

  • Schemmel C (1967) Vergleichende Untersuchungen an den Hautsinnesorganen ober-und unterirdisch lebender Astyanax-Formen. Z Morph Tiere 61: 255–316

    CrossRef  Google Scholar 

  • Schmitz A, Bleckmann H, Mogdans J (2008) Organization of the superficial neuromast system in goldfish, Carassius auratus. J Morphol 269: 751–761

    PubMed  CrossRef  Google Scholar 

  • Schmitz A, Sehrbrock A, Schmitz H (2007) The analysis of the mechanosensory origin of the infrared sensilla in Melanophila acuminata (Coleoptera; Bupestridae) adduces new insight into the transduction mechanism. Arth Struct Develop 36: 291–303

    CrossRef  Google Scholar 

  • Schwartz E (1970) Ferntastsinnesorgane von Oberflachenfischen. Z Morphol Tiere 67:40–57

    Google Scholar 

  • Settles GS, Kester DA, Dodson-Dreibelbis U (2003) The external aerodynamics of canine olfaction. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engeneering. Springer, Wien New York, pp 323–335

    CrossRef  Google Scholar 

  • Sutterlin AM, Waddy S (1975) Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). J Fish Res Bd. Canada 32: 2441–2446

    CrossRef  Google Scholar 

  • Teyke T (1989) Learning and remembering the environment in the blind cave fish Anoptichthys jordani. J Comp Physiol A164: 655–662

    CrossRef  Google Scholar 

  • Trump WJV, McHenry MJ (2008) The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). J Exp Biol 211: 2105–2115

    PubMed  CrossRef  Google Scholar 

  • van Netten SM (2006) Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology. Biol Cybern 94: 67–85

    PubMed  CrossRef  Google Scholar 

  • van Netten SM, Khanna SM (1993) Mechanical demodulation of hydrodynamic stimuli performed by the lateral line organ. In: Allum JHJ, Allum-Mecklenburg DJ, Harris FP, Probst R (eds) Prog Brain Res. Elsevier, Amsterdam, pp45–51

    Google Scholar 

  • van Netten SM, Wiersinga-Post C (2002) Matched peripheral filtering in the lateral line organ and relation to temperature. Bioacoustics 12: 153–156

    CrossRef  Google Scholar 

  • Vogel D, Bleckmann H (2000) Behavioral discrimination of water motions caused by moving objects. J Comp Physiol A 186:1107–1117

    PubMed  CrossRef  Google Scholar 

  • Voigt R, Carton AG, Montgomery JC (2000) Responses of anterior lateral line afferent neurones to water flow. J Exp Biol 203: 2495–2502

    PubMed  CAS  Google Scholar 

  • von der Emde G (1990) Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii. J Comp Physiol A 167: 413–421

    Google Scholar 

  • von der Emde G, Bleckmann H (1992) Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii. J Comp Physiol A 171: 683–694

    CrossRef  Google Scholar 

  • Webb JF (1989) Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol 33: 34–53

    PubMed  CrossRef  CAS  Google Scholar 

  • Weber T, Bleckmann H, Miinz H (1991) Model experiments regarding the function of complex lateral line canals. In: Pfannenstiel H-D (ed) Verh Dtsch Zool Ges 84. Gustav Fischer, Stuttgart, pp 461–462

    Google Scholar 

  • Wehner R (1987) Matched filters — neural models of the external world. J Comp Physiol A 161: 511–531

    CrossRef  Google Scholar 

  • Wojtenek W, Mogdans J, Bleckmann H (1998) The responses of midbrain lateral line units of the goldfish Carassius auratus to moving objects. J Zool 101: 69–82

    Google Scholar 

  • Wullimann MF (1998) The central nervous system. In: Evans DH (ed) The physiology of fishes. CRC Press, New York, pp 245–282

    Google Scholar 

  • Yang Y, Chen J, Enge J, Pandya S, Chen N, Tucker C, Coombs S, Jones DL, Liu C (2006) Distant touch hydrodynamic imaging with an artificial lateral line. P Nat Acad Sci 103:18891–18895

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Bleckmann, H., Klein, A., Meyer, G. (2012). Nature as a model for technical sensors. In: Frontiers in Sensing. Springer, Vienna. https://doi.org/10.1007/978-3-211-99749-9_1

Download citation