Skip to main content

Laktat-Leistungsdiagnostik: Durchführung und Interpretation

  • Chapter
  • First Online:
Book cover Kompendium der Sportmedizin

Zusammenfassung

Sportmedizinische Leistungsprüfverfahren haben als wesentliche Aufgaben die Überprüfung der Gesundheit und der Sport- und Belastungstauglichkeit von Athleten/innen sowie die Feststellung des aktuellen Leistungszustandes unter standardisierten Bedingungen als Grundlage für weiterführende sportmedizinische und trainingspraktische Entscheidungen. Sportmedizinische Leistungsdiagnostik bestimmt dabei die Größe, die Richtungen und die Dynamik der inneren Beanspruchung bei definierten und standardisierten Belastungen und überprüft die physiologischen und patho-physiologischen Reaktionen auf standardisierte ergometrische Belastungen unter Verwendung maximaler und submaximaler Kennwerte.

Wenn nicht anders gekennzeichnet, wurden alle im Text vorgestellten Stufentest-Ergebnisse mit einem einheitlichen 1-Minuten-Protokoll durchgeführt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J (2014) Comprehensive review on lactate metabolism in human health. Mitochondrion 17: 76–100

    Article  CAS  PubMed  Google Scholar 

  • Aimet M, Pokan R, Schwieger K, Smekal G, Tschan H, von Duvillard SP, Hofmann P, Baron R, Bachl N (2001) Heart rate variability during exercise and recovery. The Tokai Journal of Sports Medical Science 13: 7–14

    Google Scholar 

  • Algrøy EA, Hetlelid KJ, Seiler S, Stray Pedersen JI (2011) Quantifying training intensity distribution in a group of Norwegian professional soccer players. Int J Sports Physiol Perform 1: 70–81

    Article  Google Scholar 

  • Amorini AM, Nociti V, Petzold A, Gasperini C, Quartuccio E, Lazzarino G, Di Pietro V, Belli A, Signoretti S, Vagnozzi R, Lazzarino G, Tavazzi B (2014) Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim Biophys Acta 1842(7): 1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Antonutto G, DiPrampero PE (1995) The concept of lactate threshold. A short review. J Sports Med Phys Fitness 35(1): 6–12

    CAS  PubMed  Google Scholar 

  • Åstrand PO (1992) Endurance sport. Endurance in Sport. Blackwell Scientific Publications, Oxford, pp 8–15

    Google Scholar 

  • Åstrand PO, Rodahl K, Dahl H, Strømme SB (2003) Textbook of Work Physiology. Physiological Bases of Exercise, 4th ed. Human Kinetics, Champaign, ILL

    Google Scholar 

  • Aunola S, Rusko H (1988) Comparison of two methods for aerobic threshold determination. Eur J Appl Physiol 57: 420–424

    Article  CAS  Google Scholar 

  • Aunola S, Rusko H (1992) Does anaerobic threshold correlate with maximal lactate steady-state? J Sports Sci 10: 309–323

    Article  CAS  PubMed  Google Scholar 

  • Baldari C, Bonavolontà V, Emerenziani GP, Gallotta MC, Silva AJ, Guidetti L (2009) Accuracy, reliability, linearity of Accutrend and Lactate Pro versus EBIO plus analyzer. Eur J Appl Physiol 107: 105–111

    Article  PubMed  Google Scholar 

  • Baldari C, Videira M, Madeira F, Sergio J, Guidetti L (2004) Lactate removal during active recovery related to the individual anaerobic and ventilatory thresholds in soccer players. Eur J Appl Physiol 93(1–2): 224–230

    Article  PubMed  Google Scholar 

  • Baldari C, Videira M, Madeira F, Sergio J, Guidetti L (2005) Blood lactate removal during recovery at various intensities below the individual anaerobic threshold in triathletes. J Sports Med Phys Fitness 45: 460–466

    CAS  PubMed  Google Scholar 

  • Bassett DR, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32: 70–84

    Article  PubMed  Google Scholar 

  • Beneke R (1995) Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc 27: 863–867

    Article  CAS  PubMed  Google Scholar 

  • Beneke R (2003a) Maximal lactate steady state concentration (MLSS): experimental and modelling approaches. Eur J Appl Physiol 88: 361–369

    Article  CAS  PubMed  Google Scholar 

  • Beneke R (2003b) Methodological aspects of maximal lactate steady state-implications for performance testing. Eur J Appl Physiol 89(1): 95–99

    Article  CAS  PubMed  Google Scholar 

  • Beneke R, von Duvillard SP (1996) Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc 28: 241–246

    Article  CAS  PubMed  Google Scholar 

  • Beneke R, Heck H, Schwarz V, Leithäuser R (1996) Maximal lactate steady state during the second decade of age. Med Sci Sports Exerc 28: 1474–1478

    Article  CAS  PubMed  Google Scholar 

  • Beneke R, Pollmann C, Bleif I, Leithäuser RM (2002) How anaerobic is the Wingate Anaerobic Test for humans. Eur J Appl Physiol 87: 388–392

    Article  CAS  PubMed  Google Scholar 

  • Beneke R, Hutler M, Von Duvillard SP, Sellens M, Leithauser RM (2003) Effect of test interruptions on blood lactate during constant workload testing. Med Sci Sports Exerc 35(9): 1626–1630

    Article  PubMed  Google Scholar 

  • Beneke R, Leithäuser RM, Ochentel O (2011) Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform 6: 8–24

    Article  PubMed  Google Scholar 

  • Binder RK, Wonisch M, Corra U, Cohen-Solal A, Vanhees L, Saner H, Schmid JP (2008) Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Cardiovasc Prev Rehabil 15: 726–734

    Article  PubMed  Google Scholar 

  • Bleicher A, Mader A, Mester J (1999) Zur Interpretation von Laktatleistungskurven – experimentelle Ergebnisse mit computergestützten Nachberechnungen. Spectrum der Sportwissenschaft 11(1): 71–83

    Google Scholar 

  • Braumann K-M, Tegtbur U, Busse MW, Maassen N (1991) Die „Laktatsenke“ – Eine Methode zur Ermittlung der individuellen Dauerleistungsgrenze. Dtsch Z Sportmed 42(6): 240–246

    Google Scholar 

  • Brooks GA, Fahey ThD, Baldwin KM (2005) Exercise Physiology. Human Bioenergetics and Its Applications, 4th ed. McGraw-Hill, New York, NY

    Google Scholar 

  • Brooks GA (1985a) Anaerobic threshold : review of the concept and directions for future research. Med Sci Sports Exerc 17: 22–31

    CAS  PubMed  Google Scholar 

  • Brooks GA (1985b) Lactate: Glycolytic end product and oxidative substrate during sustained exercise in mammals – the ‘lactate shuttle’. In: Gilles R (ed) Circulation, Respiration, and Metabolism: Current Comparative Approaches. Springer, Berlin Heidelberg, pp 208–218

    Chapter  Google Scholar 

  • Brooks GA (1986) The lactate shuttle during exercise and recovery Med Sci Sports Exerc 18: 360–368

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA (1991) Current concepts in lactate exchange. Med Sci Sports Exerc 23: 895–906

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA (2000) Intra- and extra-cellular lactate shuttles Med Sci Sports Exerc 32(49): 790–799

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA (2002) Lactate shuttles in nature. Biochem Soc Trans 30(29: 258–264

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol 587(1): 5591–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busse MW, Maassen N, Böning D (1987) Die Leistungslaktatkurve – Kriterium der aeroben Kapazität oder Indiz für das Muskelglykogen? In: Riekert H (Hrsg) Sportmedizin – Kursbestimmung. Springer, Berlin Heidelberg, S 455–467

    Chapter  Google Scholar 

  • Cabrera ME, Chizeck HJ (1996) On the existence of a lactate threshold during incremental exercise: a systems analysis. J Appl Physiol 80: 1819–1828

    CAS  PubMed  Google Scholar 

  • Cadevila L (1999) Differences between lactate concentration of samples from ear lobe and finger tip. J Physiol Biochem 55: 333–340

    Google Scholar 

  • Cagran C, Tschakert G, Stuehlinger N, Pokan R, von Duvillard SP, Hofmann P (2011) Value of the Dmax methode to determine the second lactate turn point. Med Sci Sports Exerc 43: S434

    Article  Google Scholar 

  • Cellini M, Vitiello P, Nagliati A, Ziglio PG, Martinelli S, Ballarin E, Conconi F (1986) Noninvasive determination of the anaerobic threshold in swimming. Int J Sports Med 7: 347–351

    Article  CAS  PubMed  Google Scholar 

  • Cheng B, Kuipers H, Snyder AC, Keizer HA, Jeukendrup A, Hesselink M (1992) A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med 13: 518–522

    Article  CAS  PubMed  Google Scholar 

  • Christensen PM, Bangsbo J (2015) Warm-Up Strategy and High Intensity Endurance Performance in Trained Cyclists. Int J Sports Physiol Perform 10(3): 353–360

    Article  PubMed  Google Scholar 

  • Clasing D, Weicker H, Böning D (1994) Stellenwert der Laktatbestimmung in der Leistungdiagnostik. Gustav Fischer, Stuttgart

    Google Scholar 

  • Clausen T (2013) Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: functional significance. J Gen Physiol 142: 327–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conconi F, Ferrari M, Ziglio PG, Droghetti P, Codeca, L (1982) Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 52: 869–873

    CAS  PubMed  Google Scholar 

  • Conconi F, Grazzi G, Casoni I, Guglielmini C, Borsetto C, Ballarin E, Mazzoni G, Patracchini M, Manfredini F (1996) The Conconi test: Methodology after 12 years of application. Int J Sports Med 17: 509–519

    Article  CAS  PubMed  Google Scholar 

  • Corrado D, Basso C, Thiene G (2012) Sudden cardiac death in athletes: what is the role of screening? Curr Opin Cardiol 27: 41–48

    Google Scholar 

  • Dassonville J, Beillot J, Lessard Y, Jan J, Andre AM, LePourcelet C, Rochcongar P, Carre F (1998) Blood lactate concentration during exercise: effect of sampling site and exercise mode. J Sports Med Phys Fitness 38: 39–46

    CAS  PubMed  Google Scholar 

  • Davis HA, Bassett J, Hughes P, Gass GC (1983) Anaerobic Threshold and Lactate Turnpoint. Eur J Appl Physiol 50: 383–392

    Article  CAS  Google Scholar 

  • Davis JK, Green JM (2009) Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med 39: 813–832

    Article  CAS  PubMed  Google Scholar 

  • Denadai BS, Guglielmo LGA, Denadai MLDR (2000) Effect of Exercise Mode on the Blood Lactate Removal during Recovery of High-Intensity Exercise Biol Sport 17: 37–45

    Google Scholar 

  • Dean TM, Perreault L, Mazzeo RS, Horton TJ (2003) No effect of menstrual cycle phase on lactate threshold. J Appl Physiol 95: 2537–2543

    Article  PubMed  Google Scholar 

  • Dennis SC, Noakes TD, Bosch AN (1992) Ventilation and blood lactate increase exponentially during incremental exercise. J Sports Sci 10: 437–449

    Article  CAS  PubMed  Google Scholar 

  • Deruelle F, Nourry C, Mucci P, Bart F, Grosbois JM, Lensel G, Fabre C (2007) Optimal exercise intensity in trained elderly men and women. Int J Sports Med 28: 612–616

    Article  CAS  PubMed  Google Scholar 

  • Dickhuth HH, Yin L, Niess A, Röcker K, Mayer F, Heitkamp HC, Horstmann T (1999) Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med 20, 2: 122–127

    CAS  PubMed  Google Scholar 

  • Dotan R, Zigel L, Rotstein A, Greenberg T, Benyamini Y, Falk B (2011) Reliability and validity of the lactate-minimum test. A revisit. J Sports Med Phys Fitness 51: 42–49

    CAS  PubMed  Google Scholar 

  • Draoui N, Feron O (2011) Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis Model Mech 4: 727–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droghetti P, Borsetto C, Casoni I, Cellini M, Ferrari M, Paolini AR, Ziglio PG, Conconi F (1985) Noninvasive determination of the anaerobic threshold in canoeing, cross-country skiing, cycling, roller, and ice-skating, rowing, and walking. Eur J Appl Physiol Occup Physiol 53: 299–303

    Article  CAS  PubMed  Google Scholar 

  • Ehrmann JK, Gordon PM, Visich PS, Keteyian SJ (2009) Clinical Exercise Physiology, 2nd ed. Human Kinetics, Champaign, ILL

    Google Scholar 

  • Emhoff CA, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA (2013) Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J Appl Physiol 114: 297–306

    Article  CAS  PubMed  Google Scholar 

  • Emhoff CA, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA (2013) Direct and indirect lactate oxidation in trained and untrained men. J Appl Physiol 115: 829–838

    Article  CAS  PubMed  Google Scholar 

  • Esteve-Lanao J, San Juan AF, Earnest CP, Foster C, Lucia A (2005) How do endurance runners actually train? Relationship with competition performance. Med Sci Sports Exerc 37: 496–504

    Article  PubMed  Google Scholar 

  • Fasching P, Rinnerhofer St, Wultsch G, Hofmann P (2014) First Lactate Turn Point: a limiting factor for heavy occupational work. Med Sci Sports Exerc 46: S545–546

    Article  Google Scholar 

  • Faude O, Meyer T (2008) Methodische Aspekte der Laktatbestimmung. Deutsch Ztschr Sportmed 592: 305–309

    Google Scholar 

  • Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med 39: 469–490

    Google Scholar 

  • Feliu J, Ventura JL, Segura R, Rodas G, Riera J, Estruch A, Zamora A, MacLean DA, Bangsbo J, Saltin B (1999) Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J Appl Physiol 87: 1483–1490

    Google Scholar 

  • Figley CR (2011) Lactate transport and metabolism in the human brain: implications for the astrocyte-neuron lactate shuttle hypothesis. J Neurosci 31: 4768–4770

    Article  CAS  PubMed  Google Scholar 

  • Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, Coke LA, Fleg JL, Forman DE, Gerber TC, Gulati M, Madan K, Rhodes J, Thompson PD, Williams MA (2013) American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology, Council on Nutrition, Physical Activity and Metabolism, Council on Cardiovascular and Stroke Nursing, and Council on Epidemiology and Prevention. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation 128: 873–934

    Article  PubMed  Google Scholar 

  • Fürnschuss S (2010) Auswirkungen von lokalem Muskelausdauertraining der Beine auf die Laktatumstellpunkte beim Ergometertest. Unveröff. Dipl. Arb., Universität Graz

    Google Scholar 

  • Glenn TC, Martin NA, McArthur DL, Hovda D, Vespa PM Md, Horning MA, Johnson ML, Brooks GA (2015a) Endogenous nutritive support following traumatic brain injury: peripheral lactate production for glucose supply via gluconeogenesis. J Neurotrauma 32(11): 811–819

    Article  PubMed  PubMed Central  Google Scholar 

  • Glenn TC, Martin NA, Horning MA, McArthur DL, Hovda D, Vespa PM Md, Brooks GA (2015b) Lactate: Brain Fuel in Human Traumatic Brain Injury. A Comparison to Normal Healthy Control Subjects. J Neurotrauma 32(11): 820–832

    Article  PubMed  PubMed Central  Google Scholar 

  • MacLean DA, Bangsbo J, Saltin B (1999) Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J Appl Physiol 87: 1483–1490

    CAS  PubMed  Google Scholar 

  • Fröhlich J, Urhausen A, Seul U, Kindermann W (1989) Beeinflussung der individuellen anaeroben Schwelle durch kohlehydratarme und -reiche Ernährung. Leistungssport 19: 18–20

    Google Scholar 

  • Gleeson TT (1996) Post-Exercise Lactate Metabolism: A Comparative Review of Sites, Pathways, and Regulation. Annu Rev Physiol 58: 565–581

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP (2013) Monocarboxylic acid transport. Compr Physiol 3: 1611–1643

    Article  PubMed  Google Scholar 

  • Hartleb C (2005) Laktatminimum. Eine Kenngröße zur Bestimmung der Ausdauerleistungsfähigkeit? Unveröffentl. Dipl. Arb., Universität Graz

    Google Scholar 

  • Hauser T, Adam J, Schulz H (2014) Comparison of selected lactate threshold parameters with maximal lactate steady state in cycling. Int J Sports Med 35: 517–521

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Hussien R, Brooks GA (2006) Colocalization of MCT1, CD147 and LDH in mitochondrial inner membrane of L6 cells: Evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 290: E1237–E1244

    Article  CAS  Google Scholar 

  • Hashimoto T, Hussien R, Cho H-S, Kaufer D, Brooks GA (2008) Evidence for a mitochondrial lactate oxidation complex in rat neurons: a crucial component for a brain lactate shuttle. PLoS One 13: e2915

    Article  CAS  Google Scholar 

  • Heck H (1990) Laktat in der Leistungsdiagnostik. Hofmann, Schorndorf

    Google Scholar 

  • Heck H, Rosskopf P (1994) Grundlagen verschiedener Laktatschwellenkonzepte und ihre Bedeutung für die Trainingsleistung. In: Clasing D, Weicker H, Böning D. Stellenwert der Laktatbestimmung in der Leistungdiagnostik. G. Fischer, Stuttgart: 120–126

    Google Scholar 

  • Heck H, Philippi H, Rost R, Schürch P, Hollmann W (1976) Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Sportarzt u Sportmed 27: 80–88 und 109–112

    Google Scholar 

  • Heck H, Hess G, Mader A (1985) Vergleichende Untersuchung zu verschiedenen Laktat-Schwellenkonzepten. Dtsch Ztschr Sportmed 2: 40–52

    Google Scholar 

  • Hill DW (1996) Effect of time of day on aerobic power in exhaustive high-intensity exercise. J Sports Med Phys Fitness 36: 155–160

    CAS  PubMed  Google Scholar 

  • Hill AV, Lupton H (1923) Muscular exercise, lactic acid and the supply and utilization of oxygen. Q J Med 16: 135–171

    Article  CAS  Google Scholar 

  • Hofmann P (1997) Die Laktat-Diagnostik im Sport – Einfluss der Ernährung. Labor Aktuell 5: 10–13

    Google Scholar 

  • Hofmann P (2007) Drei Phasen der Energiebereitstellung. medicalsports networks 3: 58–59

    Google Scholar 

  • Hofmann P (2009) Belastungsuntersuchungen und Protokolle. In: Pokan R, Benzer W, Gabriel H, Hofmann P, Kunschitz E, Mayr K, Samitz G, Schindler K, Wonisch M (Hrsg) Kompendium der kardiologischen Prävention und Rehabilitation. Springer, Wien New York: 191–196

    Chapter  Google Scholar 

  • Hofmann P, Pokan R (1996) Neue Erkenntnisse zur Herzfrequenz-Leistungskurve. In: Müller E, Schwameder H. Aspekte der Sportwissenschaft. Österr. Sportwissenschaftliche Gesellschaft 1996, 121–131

    Google Scholar 

  • Hofmann P, Pokan R (2010) Value of the application of the heart rate performance curve in sports. Int J Sports Physiol Perform 4: 437–447

    Article  Google Scholar 

  • Hofmann P, Tschakert G (2011) Special needs to prescribe exercise intensity for scientific studies. Cardiol Res Pract (Dec 15): 209–302

    Google Scholar 

  • Hofmann P, Leitner H, Gaisl G, Neuhold Ch (1988) Computerunterstützte Auswertung des modifizierten CONCONI-Tests am Fahrradergometer. Leistungssport 18: 26–27

    Google Scholar 

  • Hofmann P, Leitner H, Gaisl G (1992) Heart rate threshold, lactate turn point and anaerobic threshold determination by electromyography. Hung Rev of Sports Med 33: 13–20

    Google Scholar 

  • Hofmann P, Bunc V, Leitner H, Pokan R, Gaisl G (1994a) Heart Rate Threshold Related to Lactate Turn Point and Steady State Exercise on Cycle Ergometer. Eur J Appl Physiol 69: 132–139

    Article  CAS  Google Scholar 

  • Hofmann P, Pokan R, Preidler K, Leitner H, Szolar D, Eber B, Schwaberger G (1994b) Relationship between heart rate threshold, lactate turn point and myocardial function. Int J Sports Med 15: 232–237

    Article  CAS  PubMed  Google Scholar 

  • Hofmann P, Peinhaupt G, Leitner H, Pokan R (1995a) Evaluation of Heart Rate Threshold by means of Lactate Steady State and Endurance Tests in White Water Kayakers. In: Viitasoalo JT, Kujala U (eds) The Way To Win. Proceedings of the International Congress on Applied Research in Sports held in Helsinki, Finland, on 9–11 August 1994, The Finnish Society for Research in Sport and Physical Education, Helsinki 1995, pp 217–220

    Google Scholar 

  • Hofmann P, Wiesspeiner G, Pokan R (1995b) Arterial Oxygen Saturation during graded cycle ergometer exercise related to aerobic and anaerobic lactate threshold. VIIIth FIMS European Congress of Sports Medicine, Granada 1995: p 130

    Google Scholar 

  • Hofmann P, Wiesspeiner G, Pokan R (1995c) Puls Oxymetrie – Möglichkeiten in der nichtinvasiven Leistungsdiagnostik. ÖJSM 25: 72–75

    Google Scholar 

  • Hofmann P, Peinhaupt G, Pokan R, Zweiker R (1996a) Relationship between treadmill performance and sport specific performance in white water kayakers. 1st Annual Congress of the College of Sport Science, Nice, May 28–31:664–665

    Google Scholar 

  • Hofmann P, Pokan R, Beaufort F, Schumacher M, Fruhwald FM, Zweiker R, Eber B, Gasser R et al. (1996b) Left ventricular function during incremental cycle ergometer exercise related to aerobic and anaerobic threshold in patients after myocardial infarction, healthy older subjects and young sports students. In: Chytrackova J, Kohoutek M (eds) Sport Kinetics 95. Charles University, Prag, pp 192–198

    Google Scholar 

  • Hofmann P, Pokan R, Seibert F-J, Zweiker R, Schmid P (1997a) The heart rate performance curve during incremental cycle ergometer exercise in healthy young male subjects. Med Sci Sports Exerc 29: 762–768

    Article  CAS  PubMed  Google Scholar 

  • Hofmann P, Seibert F-J, Öhlknecht A, Sudi KM, Pokan R, Schmid P (1997b) Relationship between lactate turn points and potassium and sodium response during incremental cycle ergometer exercise. The Second Annual Congress of the European College of Sport Science Copenhagen, Denmark 20.–23. August 1997, pp 976–977

    Google Scholar 

  • Hofmann P, Lamprecht M, Schwaberger G, Pokan R, von Duvillard SP (1998a) Einfluss unterschiedlicher Diätformen auf die Laktatleistungskurve im Stufentest und das Laktatverhalten bei Dauerbelastung auf dem Fahrradergometer – Eine Einzelfallstudie. Dtsch Ztschr Sportmed 49: 80–85

    Google Scholar 

  • Hofmann P, Pokan R, von Duvillard SP (1998b) Influence of step length during incremental exercise on the heart rate performance curve. Med Sci Sports Exerc 30, Suppl: 242

    Article  Google Scholar 

  • Hofmann P, Seibert F-J, Öhlknecht A, Sudi KM, Pokan R, Schmid P (1998a) Relationship between blood potassium level and the deflection of the heart rate performance curve. Int J Sports Med 19: 25

    Google Scholar 

  • Hofmann P, Seibert F-J, Pokan R, Golda M, Wallner D, von Duvillard SP (1999) Relationship between blood pH, potassium and the heart rate performance curve. Med Sci Sports Exerc 31: 150

    Article  Google Scholar 

  • Hofmann P, Pokan R, von Duvillard SP (2000) Heart rate performance curve and heart rate turn point. Acta Universitatis Tartuensis 5: 23–43

    Google Scholar 

  • Hofmann P, Hartleb C, Wonisch M, Schwaberger G, Pokan R, von Duvillard SP (2006) Lactate-Minimum and Lactate Turn Point. In: Hoppeler H, Reilly T, Tsolakidis E, Gfeller L, Klossner S (eds) ECSS Lausanne 06 Book of Abstracts: p 445

    Google Scholar 

  • Hofmann P, Jürimäe T, Jürimäe J, Purge P, Maestu J, Wonisch M, Pokan R, von Duvillard SP (2007) HRTP, prolonged ergometer exercise, and single sculling. Int J Sports Med 28: 964–969

    Article  CAS  PubMed  Google Scholar 

  • Hofmann P, Dohr K, Seibert F-J, Wonisch M, Pokan R, Smekal G, Schwaberger G (2008) Relationship between Lactate Turn Point and Maximal Performance in Young Healthy Male and Female Subjects of Different Exercise Performance Level. In: Cabri J, Alves F, Araujo D, Barreiros J, Diniz J, Veloso A (eds) Book of Abstracts of the 13th Congress of the European College of Sport Science, 9–12 July 2008 Estoril, Portugal: 470

    Google Scholar 

  • Hofmann P, Wonisch M, Pokan R (2009) Laktat-Leistungs-Diagnostik. In: Pokan R, Benzer W, Gabriel H, Hofmann P, Kunschitz E, Mayr K, Samitz G, Schindler K, Wonisch M (Hrsg) Kompendium der kardiologischen Prävention und Rehabilitation. Springer, Wien New York, S 225–246

    Chapter  Google Scholar 

  • Hofmann P, Tschakert G, Pokan R, von Duvillard SP (2010) Three-Phase Time Course of Physiological Variables During Incremental Cycling in Young Male and Female Subjects. Med Sci Sports Exerc 42: S238

    Article  Google Scholar 

  • Hofmann P, Tschakert G, Schwarz H, Mueller A, Groeschl W, Pokan R, von Duvillard SP (2012) Three Phase Response of Blood Lactate Concentration in Incremental and Constant Load Exercise. Med Sci Sports Exerc 44: S709–710

    Article  CAS  Google Scholar 

  • Hollmann W, Strüder KH (2009) Sportmedizin. Grundlagen für körperliche Aktivität, Training und Präventivmedizin, 5. Aufl. Schattauer, Stuttgart

    Google Scholar 

  • Inbar O, Bar-Or O, Skinner JS (1996) The Wingate Anaerobic Test. Human Kinetics, Champaign, ILL

    Google Scholar 

  • Ivy JL, Costill DL, Van Handel PJ, Essig DA, Lower RW (1981) Alteration in the lactate threshold with changes in substrate availability. Int J Sports Med 2: 139-142

    Article  CAS  PubMed  Google Scholar 

  • Kargotich S, Goodman C, Keast D, Morton AR (1998) The Influence of Exercise-Induced Plasma Volume Changes on the Interpretation of Biochemical Parameters Used for Monitoring Exercise, Training and Sport. Sports Med 26: 101–117

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J (1971) Lactate in working muscles after prolonged exercise. Acta Physiol Scand 82: 123–130

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J, Jacobs I (1982) Onset of Blood Lactate Accumulation during Muscular Exercise as a Threshold Concept. I. Theoretical Considerations. Int J Sports Med 3: 190–210

    Article  CAS  PubMed  Google Scholar 

  • Karapetian GK, Engels HJ, Gretebeck KA, Gretebeck RJ (2012) Effect of caffeine on LT, VT and HRVT. Int J Sports Med 33: 507–513

    Article  CAS  PubMed  Google Scholar 

  • Keul J, Simon G, Berg A, Dickhut HH, Goerttler I, Kübel R (1979) Bestimmung der individuellen anaeroben Schwelle zur Leistungsbewertung und Trainingsgestaltung. Dtsch Ztschr Sportmed 7: 212–218

    Google Scholar 

  • Kindermann W, Keul J (1977) Anaerobe Energiebereitstellung im Hochleistungssport. Die Bedeutung der metabolischen Azidose unter physiologischen und pathologischen Bedingungen. Wissenschaftliche Schriftenreihe des Deutschen Sportbundes, Bd 13. Hofmann, Schorndorf

    Google Scholar 

  • Kindermann W, Simnon G, Keul J (1979) The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 42: 25–34

    Article  CAS  Google Scholar 

  • Leitner H, Hofmann P, Gaisl G (1988) A method for the microcomputer aided determination of the anaerobic threshold by means of heart rate curve analysis. Conference Proceedings 15 years: Biomedical Engineering in Austria 88 Graz (June): 136–141

    Google Scholar 

  • Leitner H, Hofmann P, Leitner K (1992) Software zur Auswertung von Herzfrequenz und Laktatwerten in der Leistungsdiagnostik. Österr J Sportmed 22: 115–118

    Google Scholar 

  • Leitner H, Hofmann P, Leitner K (1994) Anwendung der Fuzzy Logik zur Schwellenbestimmung in der Leistungsdiagnostik. In: Liesen H, Weiss M, Baum M (Hrsg) Regulations- und Repairmechanismen. 33. Deutscher Sportärztekongress Paderborn 1993. Deutscher Ärzte Verlag, Köln, S 197–199

    Google Scholar 

  • Mader A, Heck H (1986) A theory of the metabolic origin of “anaerobic threshold”. Int J Sports Med 7, Suppl 1: 45–65

    Article  PubMed  Google Scholar 

  • Mader A, Liesen H, Heck H, Philippi H, Rost R, Schürch P, Hollmann W (1976) Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Sportarzt und Sportmedizin 27: 80–88 und 109–112

    Google Scholar 

  • Maud PJ, Foster C (eds) (1995) Physiological Assessment of Human Fitness. Human Kinetics, Champaign, ILL

    Google Scholar 

  • McCaughan HMC, McRae RZ, Smith HK (2000) The Stability of Lactate Concentration in Preserved Blood Microsamples. Int J Sports Med 21: 37–40

    Article  CAS  PubMed  Google Scholar 

  • McClelland GB, Khanna S, Gonzalez G, Butz CE, Brooks GA (2003) Peroxisomal membrane monocarboxylate transporters: evidence for a redox shuttle system? Biochem Biophys Res Commun 203: 130–135

    Article  CAS  Google Scholar 

  • McNaughton LR, Thompson D, Philips G, Bachx K, Crickmore L (2002) A comparison of the lactate pro, accusport, analox and kodak ektachem lactate analysers in normal, hot and humid conditions. Int J Sports Med 23: 130–135

    Article  CAS  Google Scholar 

  • MacRae HH, Noakes TD, Dennis SC (1995) Effects of endurance training on lactate removal by oxidation and gluconeogenesis during exercise. Pflugers Arch 430: 964–970

    Article  CAS  PubMed  Google Scholar 

  • Maassen N, Busse MW (1989) The relationship between lactic acid and work load: a measure for endurance capacity or an indicator of carbohydrate deficiency? Eur J Appl Physiol 58: 728–737

    Article  CAS  Google Scholar 

  • Medbo Jl, Mamen A, Holt Olsen O, Evertsen F (2000) Examination of four different instruments for measuring blood lactate concentration. Scand J Lab Invest 60: 367–380

    Article  CAS  Google Scholar 

  • Meyer T, Lucía A, Earnest CP, Kindermann W (2005) A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters – theory and application. Int J Sports Med 26, Suppl 1: S38–48

    Article  Google Scholar 

  • Meyerhof O (1920) Die Energieumwandlungen im Muskel III. Kohlenhydrat und Milchsaureumsatz im Froschmuskel. Pflügers Arch ges Physiol 185: 11–32

    Article  CAS  Google Scholar 

  • Müller A, Tschakert G, Moser O, Gröschl W, Hofmann P (2014) High intensity exercise warm-up, inhibition of glycolysis and its practical consequences. 6th International Congress on Science and Skiing 2013, St. Christoph a. A., Austria. In: Müller E, Kröll J, Lindinger S, Pfusterschmied J, Stöggl T (eds) Science and Skiing VI. Meyer & Meyer Sport, Maidenhead (UK), pp 224–230

    Google Scholar 

  • Mujika I (2012) The cycling physiology of Miguel Indurain 14 years after retirement. Int J Sports Physiol Perform 7: 397–400

    Article  PubMed  Google Scholar 

  • Muñoz I, Seiler S, Bautista J, España J, Larumbe E, Esteve-Lanao J (2014a) Does polarized training improve performance in recreational runners? Int J Sports Physiol Perform 9: 265–272

    Article  PubMed  Google Scholar 

  • Muñoz I, Cejuela R, Seiler S, Larumbe E, Esteve-Lanao J (2014b) Training-intensity distribution during an ironman season: relationship with competition performance. Int J Sports Physiol Perform 9: 332–339

    Article  PubMed  Google Scholar 

  • Muntean P (2014) Kapilläre Blutgasanalyse und Leistungsdiagnostik bei stufenförmiger Belastungsergometrie. Unveröffentl. Dipl. Arb., Universität Graz

    Google Scholar 

  • Morton RH, Fukuba Y, Banister EW, Walsh ML, Kenny CTC, Cameron BJ (1994) Statistical evidence consistent with two lactate turnpoints during ramp exercise. Eur J Appl Physiol 69: 445–449

    Article  CAS  Google Scholar 

  • Natmessnig H (2014) Methodische Untersuchung zum aeroben Intervalltraining unter Berücksichtigung ergometrischer Kenndaten. Unveröff. Dipl. Arb., Universität Graz

    Google Scholar 

  • Naveri HK, Leinonen H, Kiilavuori K, Harkonen M (1997) Skeletal muscle lactate accumulation and creatine phosphate depletion during heavy exercise in congestive heart failure cause of limited exercise capacity. Eur Heart J 18: 1937–1945

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Schüler KP (1994) Sportmedizinische Funktionsdiagnostik. Sportmedizinische Schriftenreihe, Bd. 29. Johann Ambrosius Barth, Leipzig

    Google Scholar 

  • Ofner M, Wonisch M, Frei M, Tschakert G, Domej W, Kröpfl JM, Hofmann P (2014) Influence of acute normobaric hypoxia on physiological variables and lactate turn point determination in trained men. J Sports Sci Med 13: 774–781

    PubMed  PubMed Central  Google Scholar 

  • Pansold B, Zinner J (1994) Die Laktat-Leistungskurve – ein Analyse- und Interpretationsmodell der Leistungsdiagnostik im Schwimmen. In: Ciasing D, Weicker H, Böning D (Hrsg) Stellenwert der Laktatbestimmung in der Leistungdiagnostik. Gustav Fischer, Stuttgart, S 47–64

    Google Scholar 

  • Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20: 291–299

    Article  CAS  PubMed  Google Scholar 

  • Petter F, Malatschnig R, Gröschl W, Müller W, Schwaberger G, Hofmann P (2006) Lactate kinetics depend on the on-phase power setting. Isokin. Exerc Sci 14: 185–186

    Google Scholar 

  • Platonov NV (1999) Belastung – Ermüdung – Leistung. Der moderne Trainingsaufbau. Trainer Bibliothek 34. Philippka Sportverlag, Berlin

    Google Scholar 

  • Pokan R, Enne R, Hofmann P, Smekal G, von Duvillard SP, Leitner H, Bachl N, Schmid P (1998) Performance diagnostics in aging women and men. Int J Sports Med 19: 28

    Google Scholar 

  • Pokan R, Hofmann P, von Duvillard SP, Rohrer A, Smekal G, Fruhwald FM et al. (2000) Exercise testing in cardiovascular diseased patients – lactate turn points versus gas exchange variables. Med Sci Sports Exerc 32: S143

    Article  Google Scholar 

  • Pokan R, Hofmann P, Smekal G, Wonisch M, Bachl N, Schmid P (2002) Leistungsdiagnostik zur Trainingssteuerung in der Bewegungstherapie von Herz-Kreislauferkrankungen. Inter Prax 42(4): 797–806

    Google Scholar 

  • Pokan R, Gabriel H, Hörtnagl H, Podolsky A, Vonbank K, Wonisch M für die AG Kardiologische Rehabilitation und Sekundärprävention der ÖKG und die AG für theoretische und klinische Leistungsmedizin der Universitätslehrer Österreichs (2009) Empfehlungen für den internistischen Untersuchungsgang in der Sportmedizin. J Kardiol 16(11–12): 404–411

    Google Scholar 

  • Pokan R, Ocenasek H, Hochgatterer R, Miehl M, Vonbank K, Von Duvillard SP, Franklin B, Würth S, Volf I, Wonisch M, Hofmann P (2014) Myocardial dimensions and hemodynamics during 24-h ultra-endurance ergometry. Med Sci Sports Exerc 46: 268–275

    Article  PubMed  Google Scholar 

  • Ribeiro LF, Gonçalves CG, Kater DP, Lima MC, Gobatto CA (2009) Influence of recovery manipulation after hyperlactemia induction on the lactate minimum intensity. Eur J Appl Physiol 105: 159–165

    Article  CAS  PubMed  Google Scholar 

  • Rinnerhofer S (2012) Körperliche Leistungsfähigkeit und gemessener Energieverbrauch bei unterschiedlichen berufstypischen Tätigkeiten – Entwicklung von Normwerten. Unveröffentl. Diss., Universität Graz

    Google Scholar 

  • Robergs RA, Chwalbinska-Moneta J, Mitchell JB, Pascoe DD, Houmard J, Costill DL (1990) Blood lactate threshold differences between arterialized and venous blood. Int J Sports Med 11: 446–451

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez FA, Banquells M, Pons V, Drobnic F, Galilea PA (1992) A comparative study of blood lactate analytic methods. Int J Sports Med 13: 462–466

    Article  CAS  PubMed  Google Scholar 

  • Rusko H, Luhtanen P, Rahkila P, Viitasalo J, Rehunen S, Härkönen M (1986) Muscle metabolism, blood lactate and oxygen uptake in steady state exercise at aerobic and anaerobic thresholds. Eur J Appl Physiol 55: 181–186

    Article  CAS  Google Scholar 

  • Schwaberger G, Pessenhofer H, Schmid P, Kohla B, Sauseng N, Kenner T (1991) Anaerobic two-phase test in cyclists. In: Bachl N, Graham TE, Löllgen H (eds) Advances in Ergometry. Springer, Berlin Heidelberg New York Tokyo, pp 153–161

    Chapter  Google Scholar 

  • Seiler KS, Kjerland GØ (2006) Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports 16: 49–56

    Article  PubMed  Google Scholar 

  • Sjödin B, Jacobs I (1981) Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 2: 23–26

    Article  PubMed  Google Scholar 

  • Skinner JS, McLellan TH (1980) The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport 51: 234–248

    Article  CAS  PubMed  Google Scholar 

  • Smekal G, von Duvillard SP, Rihacek C, Pokan R, Hofmann P, Baron R, Tschan H, Bachl N (2001) A physiological profile of tennis match play. Med Sci Sports Exerc 33: 999–1005

    Article  CAS  PubMed  Google Scholar 

  • Smekal G, Scharl A, von Duvillard SP, Pokan R, Baca A, Baron R, Tschan H, Hofmann P, Bachl N (2002) Accuracy of neuro-fuzzy logic and regression calculations to determine maximal lactate steady state power output from incremental tests. Eur J Appl Physiol 88: 264–274

    Article  PubMed  Google Scholar 

  • Smekal G, von Duvillard SP, Pokan R, Lang K, Tschan H, Hofmann P, Bachl N (2003a) Respiratory gas exchange end lactate measures during competitive orienteering. Med Sei Sports Exerc 35(4): 682–689

    Article  CAS  Google Scholar 

  • Smekal G, von Duvillard SP, Pokan R, Tschan H, Baron R, Hofmann P, Wonisch M, Bachl N (2003b) Changes in blood lactate and respiratory of gas exchange measures in sports with discontinuous load profiles. Eur J Appl Physiol 89: 489–495

    Article  CAS  PubMed  Google Scholar 

  • Smekal G, von Duvillard SP, Frigo P, Tegelhofer T, Pokan R, Hofmann P, Tschan H, Baron R, Wonisch M, Renezeder K, Bachl N (2007) Menstrual cycle: no effect on exercise cardiorespiratory variables or blood lactate concentration. Med Sci Sports Exerc 39: 1098–106

    Article  CAS  PubMed  Google Scholar 

  • Sonveaux P, Vegran F, Schroeder T,Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B,Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118: 3930–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stegmann H, Kindermann W (1981) Bestimmung der individuellen anaeroben Schwelle bei unterschiedlich Ausdauertrainierten aufgrund des Verhaltens der Lactatkinetik während der Arbeits- und Erholungsphase. Dtsch Z Sportmed 32: 213–221

    Google Scholar 

  • Stegmann H, Kindermann W, Schabel A (1981) Lactate kinetics and individual anaerobic threshold. Int J Sports Med 2: 160–165

    Article  CAS  PubMed  Google Scholar 

  • Strauzenberg SE, Gürtler H, Hannemann D, Tittel K (Hrsg) (1990) Sportmedizin. Grundlagen der sportmedizinischen Betreuung. Johann Ambrosius Barth Verlag, Leipzig

    Google Scholar 

  • Stühlinger N (2010) Untersuchung der Grundlagen der Dmax Methode zur Bestimmung der anaeroben Schwelle – Vergleich mit Standardmethoden. Unveröffentl. Dipl. Arbeit, Universität Graz

    Google Scholar 

  • Taoutaou Z, Granier P, Mercier B, Mercier J, Ahmaidi S, Prefaut C (1996) Lactate kinetics during passive and partially active recovery in endurance and sprint athletes. Eur J Appl Physiol 73: 465–470

    Article  CAS  Google Scholar 

  • Tegtbur U, Busse MW, Braumann KM (1993) Estimation of an individual equilibrium between lactate production and catabolism during exercise. Med Sei Sports Exerc 25(5): 620–627

    CAS  Google Scholar 

  • Tønnessen E, Svendsen IS, Rønnestad BR, Hisdal J, Haugen TA, Seiler S (2015) The annual training periodization of 8 world champions in orienteering. Int J Sports Physiol Perform 10: 29–38

    Article  PubMed  Google Scholar 

  • Tschakert G, Hofmann P (2013) High-intensity intermittent exercise: methodological and physiological aspects. Int J Sports Physiol Perform 8: 600–610

    Article  PubMed  Google Scholar 

  • Tschakert G, Kroepfl J, Mueller A, Moser O, Groeschl W, Hofmann P (2015) Ho to regulate the acute physiological response to „aerobe“ high-intensity interval exercise. J Sport Sci Med 14(1): 29–36

    Google Scholar 

  • Urhausen A, Coen B, Weiler B, Kindermann W (1993) Individual anaerobic threshold and maximum lactate steady state. Int J Sports Med 14: 134–139

    Article  CAS  PubMed  Google Scholar 

  • van Hall G, Strømstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29: 1121–1129

    Article  PubMed  CAS  Google Scholar 

  • Von Duvillard SP, Pokan R, Hofmann P, Plaud JJ, Smith T, Brinkert R (1998) The effect of equal load and different pedal rates on respiratory gas exchange measures and lactate concentration in healthy young males. Med Sci Sports Exerc 30(5), Suppl: 14

    Article  Google Scholar 

  • von Duvillard SP, Hofmann P, Pokan R (2000) Metabolic and EMG changes resulting from a series of supra-maximal modified Wingate tests in competitive alpine skiers in the laboratory. Med Sci Sports Exerc 32(5): S360

    Google Scholar 

  • von Duvillard SP, Hofmann P, Schwaberger G, Pokan R, Meyer N, Rausch W (2001) Metabolic changes resulting from a series of consecutive supra-maximal laboratory tests in competitive alpine ski racers. In: Müller E, Schwameder H, Raschner C et al. (eds) Science and Skiing II. Schriftenreihe Schriften zur Sportwissenschaft, Bd 26. Verlag Dr. Kovac, Hamburg, S 469–479

    Google Scholar 

  • Vuorimaa T, Häkkinen K, Vähäsöyrinki P, Rusko H (1996) Comparison of three maximal anaerobic running test protocols in marathon runners, middle-distance runners and sprinters. Int J Sports Med 17: 109–113

    Article  Google Scholar 

  • Wallner D, Simi H, Burgsteiner H, Hofmann P (2013) Validity of Lactate Turn Points of trained and untrained subjects while treadmill running. In: Balague N, Torrents C, Vilanova A et al.: Book of Abstracts18th Annual of the annual Congress of the European College of Sport Science 26th–29th June, 2013: 683

    Google Scholar 

  • Wasserman K (1986) The anaerobic threshold: definition, physiological significance and identification. Adv Cardiol 35: 1–23

    Article  CAS  PubMed  Google Scholar 

  • Wasserman K, Mcllroy MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14: 844–852

    Article  CAS  PubMed  Google Scholar 

  • Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ (2005) Principles of Exercise Testing and Interpretation. Including Pathophysiology and Clinical Applications, 4th ed. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Windisch V (2012) Belastungsprofil und Beanspruchung bei Training und Wettkampf in der Sportart „Short Track“ und Vergleiche zu leistungsdiagnostischen Kenndaten. Unveröffent. Dipl. Arb., Universität Graz

    Google Scholar 

  • Wonisch M, Hofmann P, Fruhwald FM, Hoedl R, Schwaberger G, Pokan R, von Duvillard, SP, Klein W (2002) Effect of ß1-selective adrenergic blockade on maximal lactate steady state in healthy men. Eur J Appl Physiol 87: 66–71

    Article  CAS  PubMed  Google Scholar 

  • Wonisch M, Hofmann P, Schwaberger G, von Duvillard SP, Klein W (2003) Validation of a field test for the non-invasive determination of badminton specific aerobic performance. Br J Sports Med 37(2): 115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wultsch G, Rinnerhofer S, Tschakert G, Hofmann P (2012) Governmental regulations for early retirement by means of energy expenditure cut offs. Scand J Work Environ Health 38(4): 370–379

    Article  PubMed  Google Scholar 

  • Yoshida T (1984) Effect of dietary modifications on lactate threshold and onset of blood lactate accumulation during incremental exercise. Eur J Appl Physiol 53: 200–205

    Article  CAS  Google Scholar 

  • Zechner N (2011) Bestimmung von Umstellpunkten in der Herzfrequenz und Herzfrequenzvariabilität bei stufenförmiger ansteigender Ergometerbelastung im Vergleich zu metabolischen und respiratorischen Umstellpunkten. Dipl. Arb., Universität Graz

    Google Scholar 

  • Zinner J, Pansold B, Buckwitz R (1993) Computergesteuerte Auswertung von Stufentests in der Leistungsdiagnostik. Leistungssport 2: 21–26

    Google Scholar 

  • Zintl F (1988) Ausdauertraining. Grundlagen, Methoden, Trainingssteuerung. Blv sportwissen Nr. 416. BLV Verlag, München

    Google Scholar 

  • Zois J, Bishop D, Aughey R (2015) High-intensity Warm up Improves Performance During Subsequent Intermittent Exercise. Int J Sports Physiol Perform 10(4): 498–503

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Austria

About this chapter

Cite this chapter

Hofmann, P., Wonisch, M., Pokan, R. (2017). Laktat-Leistungsdiagnostik: Durchführung und Interpretation. In: Wonisch, M., Hofmann, P., Förster, H., Hörtnagl, H., Ledl-Kurkowski, E., Pokan, R. (eds) Kompendium der Sportmedizin. Springer, Vienna. https://doi.org/10.1007/978-3-211-99716-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99716-1_14

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99715-4

  • Online ISBN: 978-3-211-99716-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics