Skip to main content

Conducting Oxide Thin Films

  • Chapter
  • First Online:

Abstract

Oxides that are electronic and/or ionic conductors play an important role in many applications. Here we review the use of thin films of oxides for use as base electrodes for ferroelectrics, for use in magnetoresistive devices and for use in solid oxide fuel cells, with focus on chemical solution deposition methods for obtaining the films and on how the processing affects the properties. For base electrodes, LaNiO3 is being studied as a replacement for Pt. For magnetoresistive devices, Ca- and Sr-doped LaMnO3 exhibit colossal magnetoresistance and are studied to understand the relation between structure and properties. For solid oxide fuel cells, thinner electrolytes are highly interesting to lower the resistance and thereby enable lower operating temperatures. Chemical solution deposition methods give good stoichiometry control and can lower the processing temperature compared to traditional powder methods, enabling nanostructuring of grain sizes, grain boundaries and the porosity, both for electrolytes and cathodes. New developments in micro-solid oxide fuel cells for integration into portable devices are reviewed in the end.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tagantsev AK, Stolichnov I, Colla EL, Setter N (2001) Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features. J Appl Phys 90:1387–1402

    Google Scholar 

  2. Lou XJ (2009) Polarization fatigue in ferroelectric thin films and related materials. J Appl Phys 105:024101

    Google Scholar 

  3. Mardare CC, Joanni E, Mardare AI, de Sa CPM, Tavares PB (2005) The performance of Zr as barrier layer for Pt bottom electrodes in Pb(Zr,Ti)O3 thin film capacitors. Thin Solid Films 483:21–26

    Google Scholar 

  4. Chen YC, Sun YM, Gan JY (2004) Improved fatigue properties of lead zirconate titanate films made on oxygen-implanted platinum electrodes. Thin Solid Films 460:25–29

    Google Scholar 

  5. Nakamura T, Nakao Y, Kamisawa A, Takasu H (1994) Preparation of Pb(Zr,Ti)O3 thin-films on electrodes including IrO2. Appl Phys Lett 65:1522–1524

    Google Scholar 

  6. Alshareef HN, Auciello O, Kingon AI (1995) Electrical-properties of ferroelectric thin-film capacitors with hybrid (Pt,RuO2) electrodes for nonvolatile memory applications. J Appl Phys 77:2146–2154

    Google Scholar 

  7. Ræder H, Tyholdt F, Booij W, Calame F, Østbø NP, Bredesen R, Prume K, Rijnders G, Muralt P (2007) Taking piezoelectric microsystems from the laboratory to production. J Electroceram 19:357–362

    Google Scholar 

  8. Ledermann N, Muralt P, Baborowski J, Gentil S, Mukati K, Cantoni M, Seifert A, Setter N (2003) {100}-textured, piezoelectric Pb(Zr x Ti1-x )O3 thin films for MEMS: integration, deposition and properties. Sensor Actuat A Phys 105:162–170

    Google Scholar 

  9. Yang XY, Cheng JR, Yu SW, Chen F, Meng ZY (2008) Effect of LaNiO3 sol concentration on the structure and dielectric properties of Pb(Zr0.53Ti0.47)O3 thin films grown on LaNiO3-coated Si substrates. J Cryst Growth 310:3466–3469

    Google Scholar 

  10. Chen ST, Wang GS, Zhang YY, Yang LH, Dong XL (2007) Orientation control growth of lanthanum nickelate thin films using chemical solution deposition. J Am Ceram Soc 90:3635–3637

    Google Scholar 

  11. Meng XJ, Cheng JG, Sun JL, Ye HJ, Guo SL, Chu JH (2000) Growth of (100)-oriented LaNiO3 thin films directly on Si substrates by a simple metalorganic decomposition technique for the highly oriented PZT thin films. J Cryst Growth 220:100–104

    Google Scholar 

  12. Wang GS, Zhao Q, Meng XJ, Chu JH, Remiens D (2005) Preparation of highly (100)-oriented LaNiO3 nanocrystalline films by metalorganic chemical liquid deposition. J Cryst Growth 277:450–456

    Google Scholar 

  13. Suzuki H, Miwa Y, Naoe T, Miyazaki H, Ota T, Fuji M, Takahashi M (2006) Orientation control and electrical properties of PZT/LNO capacitor through chemical solution deposition. J Eur Ceram Soc 26:1953–1956

    Google Scholar 

  14. Shturman I, Shter GE, Etin A, Grader GS (2009) Effect of LaNiO3 electrodes and lead oxide excess on chemical solution deposition derived Pb(Zrx,Ti1-x)O3 films. Thin Solid Films 517:2767–2774

    Google Scholar 

  15. Qiao L, Bi XF (2009) Nanostructure and performance of Pt-LaNiO3 composite film for ferroelectric film devices. Acta Mater 57:4109–4114

    Google Scholar 

  16. Li AD, Wu D, Liu ZG, Ge CZ, Liu XY, Chen GX, Ming NB (1998) TEM and AFM study of perovskite conductive LaNiO3 films prepared by metalorganic decomposition. Thin Solid Films 336:386–390

    Google Scholar 

  17. Ohno T, Malic B, Fukazawa H, Wakiya N, Suzuki H, Matsuda T, Kosec M (2009) Stress engineering of the alkoxide derived ferroelectric thin film on Si wafer. J Ceram Soc Jpn 117:1089–1094

    Google Scholar 

  18. Suzuki H, Miwa Y, Miyazaki H, Takahashi M, Ota T (2004) Chemical solution deposition of conductive SrRuO3 thin film on Si substrate. Ceram Int 30:1357–1360

    Google Scholar 

  19. Miyazaki H, Miwa Y, Suzuki H (2007) Improvement in fatigue property for a PZT ferroelectric film device with SRO electrode film prepared by chemical solution deposition. Mat Sci Eng B-Solid 136:203–206

    Google Scholar 

  20. Tsymbal EY, Pettifor DG (2001) Perspectives of giant magnetoresistance. In: Ehrenreich H, Spaepen F (eds) Solid state physics, vol 56. Elsevier Academic Press Inc, San Diego

    Google Scholar 

  21. Parkin S, Jiang X, Kaiser C, Panchula A, Roche K, Samant M (2003) Magnetically engineered spintronic sensors and memory. Proc IEEE 91:661–680

    Google Scholar 

  22. Prellier W, Lecoeur P, Mercey B (2001) Colossal-magnetoresistive manganite thin films. J Phys-Condens Mat 13:R915–R944

    Google Scholar 

  23. Fontcuberta J, Balcells L, Bibes M, Navarro J, Frontera C, Santiso J, Fraxedas J, Martinez B, Nadolski S, Wojcik M, Jedryka E, Casanove MJ (2002) Magnetoresistive oxides: new developments and applications. J Magn Magn Mater 242:98–104

    Google Scholar 

  24. Haghiri-Gosnet AM, Renard JP (2003) CMR manganites: physics, thin films and devices. J Phys D-Appl Phys 36:R127–R150

    Google Scholar 

  25. Siwach PK, Singh HK, Srivastava ON (2008) Low field magnetotransport in manganites. J Phys-Condens Mat 20:273201

    Google Scholar 

  26. Jin S, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264:413–415

    Google Scholar 

  27. Bae SY, Wang SX (1998) Novel sol–gel processing for polycrystalline and epitaxial thin films of La0.67Ca0.33MnO3 with colossal magnetoresistance. J Mater Res 13:3234–3240

    Google Scholar 

  28. Hasenkox U, Mitze C, Waser R, Arons RR, Pommer J, Guntherodt G (1999) Chemical solution deposition of epitaxial La1-x(Ca,Sr)xMnO3 thin films. J Electroceram 3:255–260

    Google Scholar 

  29. Fors R, Khartsev S, Grishin A, Pohl A, Westin G (2004) Sol–gel derived versus pulsed laser deposited epitaxial La0.67Ca0.33MnO3 films: structure, transport and effects of post-annealing. Thin Solid Films 467:112–116

    Google Scholar 

  30. Jain M, Lin Y, Shukla P, Li Y, Wang H, Hundley MF, Burrell AK, McCleskey TM, Foltyn SR, Jia QX (2007) Ferroic metal-oxide films grown by polymer assisted deposition. Thin Solid Films 515:6411–6415

    Google Scholar 

  31. Jain M, Bauer E, Ronning F, Hundley MF, Civale L, Wang H, Malorov B, Burrell AK, McClesky TM, Foltyn SR, DePaula RF, Jia QX (2008) Mixed-valence perovskite thin films by polymer-assisted deposition. J Am Ceram Soc 91:1858–1863

    Google Scholar 

  32. Raju AR, Aiyer HN, Nagaraju BV, Mahendiren R, Raychaudhuri AK, Rao CNR (1997) Epitaxial films of La1-x MnO3 exhibiting CMR prepared using nebulized spray pyrolysis. J Phys D-Appl Phys 30:L71–L73

    Google Scholar 

  33. Singh HK, Khare N, Siwach PK, Srivastava ON (2000) Low-field magneto-resistance of spray pyrolysis deposited La0.67Ca0.33MnO3 thin films. J Phys D-Appl Phys 33:921–925

    Google Scholar 

  34. Aydogdu GH, Kuru Y, Habermeier HU (2008) Novel electronic and magnetic properties of La0.5Ca0.5MnO3 films deposited on (111) SrTiO3 substrates. J Cryst Growth 310:4521–4524

    Google Scholar 

  35. Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler LJ (2000) Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ion 131:79–96

    Google Scholar 

  36. Perednis D, Gauckler LJ (2004) Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ion 166:229–239

    Google Scholar 

  37. Evans A, Bieberle-Hütter A, Rupp JLM, Gauckler LJ (2009) Review on microfabricated micro-solid oxide fuel cell membranes. J Power Sources 194:119–129

    Google Scholar 

  38. Holtappels P, Vogt U, Graule T (2005) Ceramic materials for advanced solid oxide fuel cells. Adv Eng Mater 7:292–302

    Google Scholar 

  39. Fergus JW (2006) Electrolytes for solid oxide fuel cells. J Power Sources 162:30–40

    Google Scholar 

  40. Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishai N (1999) Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system. Solid State Ion 121:133–139

    Google Scholar 

  41. Steele BCH (2000) Appraisal of Ce1-y Gd y O2-y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ion 129:95–110

    Google Scholar 

  42. Ishihara T (2006) Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cells. Bull Chem Soc Jpn 79:1155–1166

    Google Scholar 

  43. Simner SP, Suarez-Sandoval D, Mackenzie JD, Dunn B (1997) Synthesis, densification, and conductivity characteristics of BICUVOX oxygen-ion-conducting ceramics. J Am Ceram Soc 80:2563–2568

    Google Scholar 

  44. Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334:935–939

    Google Scholar 

  45. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Google Scholar 

  46. Haile SM (2003) Fuel cell materials and components. Acta Mater 51:5981–6000

    Google Scholar 

  47. Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. I. Performance-determining factors. J Solid State Electrochem 12:1039–1060

    Google Scholar 

  48. Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. II. Electrochemical behavior vs. materials science aspects. J Solid State Electrochem 12:1367–1391

    Google Scholar 

  49. Tsipis EV, Kharton VV (2011) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects. J Solid State Electrochem 15:1007–1040

    Google Scholar 

  50. Jasinski P, Molin S, Gazda M, Petrovsky V, Anderson HU (2009) Applications of spin coating of polymer precursor and slurry suspensions for solid oxide fuel cell fabrication. J Power Sources 194:10–15

    Google Scholar 

  51. Stoermer AO, Rupp JLM, Gauckler LJ (2006) Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC. Solid State Ion 177:2075–2079

    Google Scholar 

  52. Mehta K, Xu R, Virkar AV (1998) Two-layer fuel cell electrolyte structure by sol–gel processing. J Sol-Gel Sci Technol 11:203–207

    Google Scholar 

  53. Oh E-O, Whang C-M, Lee Y-R, Park S-Y, Prasad DH, Yoon KJ, Son J-W, Lee J-H, Lee H-W (2012) Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD). Adv Mater 24:3373–3377

    Google Scholar 

  54. Beckel D, Bieberle-Hütter A, Harvey A, Infortuna A, Muecke UP, Prestat M, Rupp JLM, Gauckler LJ (2007) Thin films for micro solid oxide fuel cells. J Power Sources 173:325–345

    Google Scholar 

  55. Kosacki I, Suzuki T, Petrovsky V, Anderson HU (2000) Electrical conductivity of nanocrystalline ceria and zirconia thin films. Solid State Ion 136:1225–1233

    Google Scholar 

  56. Suzuki T, Kosacki I, Anderson HU (2002) Microstructure-electrical conductivity relationships in nanocrystalline ceria thin films. Solid State Ion 151:111–121

    Google Scholar 

  57. Guo X, Waser R (2006) Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria. Prog Mater Sci 51:151–210

    Google Scholar 

  58. Badwal SPS, Drennan J (1987) Yttria zirconia – effect of microstructure on conductivity. J Mater Sci 22:3231–3239

    Google Scholar 

  59. Badwal SPS, Drennan J (1989) Grain-boundary resistivity in Y-TZP materials as a function of thermal history. J Mater Sci 24:88–96

    Google Scholar 

  60. Lee JH (2009) Highly resistive intergranular phases in solid electrolytes: an overview. Mon Chem 140:1081–1094

    Google Scholar 

  61. Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148:E121–E126

    Google Scholar 

  62. Guo X, Sigle W, Maier J (2003) Blocking grain boundaries in yttria-doped and undoped ceria ceramics of high purity. J Am Ceram Soc 86:77–87

    Google Scholar 

  63. Guo X, Sigle W, Fleig J, Maier J (2002) Role of space charge in the grain boundary blocking effect in doped zirconia. Solid State Ion 154:555–561

    Google Scholar 

  64. Guo X, Zhang ZL (2003) Grain size dependent grain boundary defect structure: case of doped zirconia. Acta Mater 51:2539–2547

    Google Scholar 

  65. Chiang YM, Lavik EB, Blom DA (1997) Defect thermodynamics and electrical properties of nanocrystalline oxides: Pure and doped CeO2. Nanostruct Mater 9:633–642

    Google Scholar 

  66. Kosacki I, Rouleau CM, Becher PF, Bentley J, Lowndes DH (2005) Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ion 176:1319–1326

    Google Scholar 

  67. García-Sánchez MF, Peña J, Ortiz A, Santana G, Fandiño J, Bizarro M, Cruz-Gandarilla F, Alonso JC (2008) Nanostructured YSZ thin films for solid oxide fuel cells deposited by ultrasonic spray pyrolysis. Solid State Ion 179:243–249

    Google Scholar 

  68. Sillassen M, Eklund P, Sridharan M, Pryds N, Bonanos N, Bøttiger J (2009) Ionic conductivity and thermal stability of magnetron-sputtered nanocrystalline yttria-stabilized zirconia. J Appl Phys 105:104907

    Google Scholar 

  69. Rupp JLM, Gauckler LJ (2006) Microstructures and electrical conductivity of nanocrystalline ceria-based thin films. Solid State Ion 177:2513–2518

    Google Scholar 

  70. Joo JH, Choi GM (2006) Electrical conductivity of YSZ film grown by pulsed laser deposition. Solid State Ion 177:1053–1057

    Google Scholar 

  71. Guo X, Vasco E, Mi SB, Szot K, Wachsman E, Waser R (2005) Ionic conduction in zirconia films of nanometer thickness. Acta Mater 53:5161–5166

    Google Scholar 

  72. Peters C, Weber A, Butz B, Gerthsen D, Ivers-Tiffee E (2009) Grain-size effects in YSZ thin-film electrolytes. J Am Ceram Soc 92:2017–2024

    Google Scholar 

  73. Chun SY, Mizutani N (2001) The transport mechanism of YSZ thin films prepared by MOCVD. Appl Surf Sci 171:82–88

    Google Scholar 

  74. Chen CC, Nasrallah MM, Anderson HU (1994) Synthesis and characterization of YSZ thin-film electrolytes. Solid State Ion 70:101–108

    Google Scholar 

  75. Perednis D (2003) Thin film deposition by spray pyrolysis and the application in solid oxide fuel cells. PhD Dissertation, ETH Zurich

    Google Scholar 

  76. Wang HB, Xia CR, Meng GY, Peng DK (2000) Deposition and characterization of YSZ thin films by aerosol-assisted CVD. Mater Lett 44:23–28

    Google Scholar 

  77. Chiodelli G, Malavasi L, Massarotti V, Mustarelli P, Quartarone E (2005) Synthesis and characterization of Ce0.8Gd0.2O2-y polycrystalline and thin film materials. Solid State Ion 176:1505–1512

    Google Scholar 

  78. Rupp JLM, Infortuna A, Gauckler LJ (2007) Thermodynamic stability of gadolinia-doped ceria thin film electrolytes for micro-solid oxide fuel cells. J Am Ceram Soc 90:1792–1797

    Google Scholar 

  79. Rupp JLM, Scherrer B, Schäuble N, Gauckler LJ (2010) Time-temperature-transformation (TTT) diagrams for crystallization of metal oxide thin films. Adv Funct Mater 20:2807–2814

    Google Scholar 

  80. Kim S, Anselmi-Tamburini U, Park HJ, Martin M, Munir ZA (2008) Unprecedented room-temperature electrical power generation using nanoscale fluorite-structured oxide electrolytes. Adv Mater 20:556–559

    Google Scholar 

  81. Avila-Paredes HJ, Chen CT, Wang SZ, De Souza RA, Martin M, Munir Z, Kim S (2010) Grain boundaries in dense nanocrystalline ceria ceramics: exclusive pathways for proton conduction at room temperature. J Mater Chem 20:10110–10112

    Google Scholar 

  82. Shirpour M, Gregori G, Merkle R, Maier J (2011) On the proton conductivity in pure and gadolinium doped nanocrystalline cerium oxide. Phys Chem Chem Phys 13:937–940

    Google Scholar 

  83. Avila-Paredes HJ, Barrera-Calva E, Anderson HU, De Souza RA, Martin M, Munir ZA, Kim S (2010) Room-temperature protonic conduction in nanocrystalline films of yttria-stabilized zirconia. J Mater Chem 20:6235–6238

    Google Scholar 

  84. Bhuiyan MS, Paranthaman M, Salama K (2006) Solution-derived textured oxide thin films – a review. Supercond Sci Technol 19:R1–R21

    Google Scholar 

  85. Peshev P, Slavova V (1992) Preparation of yttria-stabilized zirconia thin-films by a sol–gel procedure using alkoxide precursors. Mater Res Bull 27:1269–1275

    Google Scholar 

  86. Kueper TW, Visco SJ, Dejonghe LC (1992) Thin-film ceramic electrolytes deposited on porous and nonporous substrates by sol–gel techniques. Solid State Ion 52:251–259

    Google Scholar 

  87. Jin M, Han S, Sung T, No K (2000) Biaxial texturing of Cu sheets and fabrication of ZrO2 buffer layer for YBCO HTS films. Physica C 334:243–248

    Google Scholar 

  88. Zhang YW, Jin S, Liao CS, Yan CH (2002) Microstructures and optical properties of nanocrystalline rare earth stabilized zirconia thin films deposited by a simple sol–gel method. Mater Lett 56:1030–1034

    Google Scholar 

  89. Smith RM, Zhou XD, Huebner W, Anderson HU (2004) Novel yttrium-stabilized zirconia polymeric precursor for the fabrication of thin films. J Mater Res 19:2708–2713

    Google Scholar 

  90. Kim SG, Nam SW, Yoon SP, Hyun SH, Han J, Lim TH, Hong SA (2004) Sol–gel processing of yttria-stabilized zirconia films derived from the zirconium n-butoxide-acetic acid-nitric acid-water-isopropanol system. J Mater Sci 39:2683–2688

    Google Scholar 

  91. Akin Y, Aslanoglu Z, Celik E, Arda L, Sigmund W, Hascicek YS (2003) Textured growth of multi-layered buffer layers on Ni tape by sol–gel process. IEEE Trans Appl Supercond 13:2673–2676

    Google Scholar 

  92. Celik E, Schwartz J, Avci E, Schneider-Muntau HJ, Hascicek YS (1999) CeO2 buffer layers for YBCO: growth and processing via sol–gel technique. IEEE Trans Appl Supercond 9:2264–2267

    Google Scholar 

  93. Akin Y, Celik E, Sigmund W, Hascicek YS (2003) Textured CeO2 thin films on nickel tape by sol–gel process. IEEE Trans Appl Supercond 13:2563–2566

    Google Scholar 

  94. Bhuiyan MS, Paranthaman M, Sathyamurthy S, Aytug T, Kang S, Lee DF, Goyal A, Payzant EA, Salama K (2003) MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors. Supercond Sci Technol 16:1305–1309

    Google Scholar 

  95. Gomilsek JP, Skofic IK, Bukovec N, Kodre A (2004) X-ray absorption study of CeO2 and Ce/V mixed oxide thin films obtained by sol–gel deposition. Thin Solid Films 446:117–123

    Google Scholar 

  96. Coll M, Gazquez J, Sandiumenge F, Puig T, Obradors X, Espinos JP, Huhne R (2008) Nanostructural control in solution-derived epitaxial Ce1-x Gd x O2-y films. Nanotechnology 19:395601

    Google Scholar 

  97. Joo JH, Choi GM (2008) Electrical conductivity of scandia-stabilized zirconia thin film. Solid State Ion 179:1209–1213

    Google Scholar 

  98. Kosacki I, Anderson HU, Mizutani Y, Ukai K (2002) Nonstoichiometry and electrical transport in Sc-doped zirconia. Solid State Ion 152:431–438

    Google Scholar 

  99. Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite-type oxide as a new oxide ionic conductor. J Am Chem Soc 116:3801–3803

    Google Scholar 

  100. Feng M, Goodenough JB (1994) A superior oxide-ion electrolyte. Eur J Solid State Inorg Chem 31:663–672

    Google Scholar 

  101. Yan JW, Matsumoto H, Enoki M, Ishihara T (2005) High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3-δ /Ce0.8Sm0.2O2-δ composite film. Electrochem Solid State Lett 8:A389–A391

    Google Scholar 

  102. Sasaki K, Muranaka M, Suzuki A, Terai T (2008) Synthesis and characterization of LSGM thin film electrolyte by RF magnetron sputtering for LT-SOFCS. Solid State Ion 179:1268–1272

    Google Scholar 

  103. Taniguchi I, van Landschoot RC, Schoonman J (2003) Electrostatic spray deposition of Gd0.1Ce0.9O1.95 and La0.9Sr0.1Ga0.8Mg0.2O2.87 thin films. Solid State Ion 160:271–279

    Google Scholar 

  104. Norby T, Larring Y (1997) Concentration and transport of protons in oxides. Curr Opin Solid State Mat Sci 2:593–599

    Google Scholar 

  105. Norby T (1999) Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ion 125:1–11

    Google Scholar 

  106. Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104:4637–4678

    Google Scholar 

  107. Lefebvre-Joud F, Gauthier G, Mougin J (2009) Current status of proton-conducting solid oxide fuel cells development. J Appl Electrochem 39:535–543

    Google Scholar 

  108. Fabbri E, Bi L, Pergolesi D, Traversa E (2012) Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes. Adv Mater 24:195–208

    Google Scholar 

  109. Agarwal V, Liu ML (1997) Preparation of barium cerate-based thin films using a modified Pechini process. J Mater Sci 32:619–625

    Google Scholar 

  110. Somroop K, Pornprasertsuk R, Jinawath S (2011) Fabrication of Y2O3-doped BaZrO3 thin films by electrostatic spray deposition. Thin Solid Films 519:6408–6412

    Google Scholar 

  111. Schneller T, Schober T (2003) Chemical solution deposition prepared dense proton conducting Y-doped BaZrO3 thin films for SOFC and sensor devices. Solid State Ion 164:131–136

    Google Scholar 

  112. Kjølseth C, Fjeld H, Prytz Ø, Dahl PI, Estournès C, Haugsrud R, Norby T (2010) Space-charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3-δ . Solid State Ion 181:268–275

    Google Scholar 

  113. Pergolesi D, Fabbri E, D'Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, Licoccia S, Balestrino G, Traversa E (2010) High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nat Mater 9:846–852

    Google Scholar 

  114. Lenrick F, Griesche D, Kim J-W, Schneller T, Wallenberg LR (2012) Electron microscopy study of single crystal BaZr0.9Y0.1O3−x films prepared by chemical solution deposition. ECS Trans 45:121–127

    Google Scholar 

  115. Jiang SP (2008) Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci 43:6799–6833

    Google Scholar 

  116. Hamedani HA, Dahmen KH, Li D, Peydaye-Saheli H, Garmestani H, Khaleel M (2008) Fabrication of gradient porous LSM cathode by optimizing deposition parameters in ultrasonic spray pyrolysis. Mater Sci Eng B-Adv 153:1–9

    Google Scholar 

  117. Yamamoto O, Takeda Y, Kanno R, Noda M (1987) Perovskite-type oxides as oxygen electrodes for high-temperature oxide fuel-cells. Solid State Ion 22:241–246

    Google Scholar 

  118. Yokokawa H, Sakai N, Kawada T, Dokiya M (1990) Thermodynamic analysis on interface between perovskite electrode and YSZ electrolyte. Solid State Ion 40–41:398–401

    Google Scholar 

  119. Kim WH, Song HS, Moon J, Lee HW (2006) Intermediate temperature solid oxide fuel cell using (La,Sr)(Co,Fe)O3-based cathodes. Solid State Ion 177:3211–3216

    Google Scholar 

  120. Beckel D, Muecke UP, Gyger T, Florey G, Infortuna A, Gauckler LJ (2007) Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis. Solid State Ion 178:407–415

    Google Scholar 

  121. Ricote S, Bonanos N, Rørvik PM, Haavik C (2012) Microstructure and performance of La0.58Sr0.4Co0.2Fe0.8O3-δ cathodes deposited on BaCe0.2Zr0.7Y0.1O3-δ by infiltration and spray pyrolysis. J Power Sources 209:172–179

    Google Scholar 

  122. Angoua BF, Slamovich EB (2012) Single solution spray pyrolysis of La0.6Sr0.4Co0.2Fe0.8O3-δ -Ce0.8Gd0.2O1.9 (LSCF-CGO) thin film cathodes. Solid State Ion 212:10–17

    Google Scholar 

  123. Taniguchi I, van Landschoot RC, Schoonman J (2003) Fabrication of La1-x Sr x Co1-y Fe y O3 thin films by electrostatic spray deposition. Solid State Ion 156:1–13

    Google Scholar 

  124. Fu CY, Chang CL, Hsu CS, Hwang BH (2005) Electrostatic spray deposition of La0.8Sr0.2Co0.2Fe0.8O3 films. Mater Chem Phys 91:28–35

    Google Scholar 

  125. Marinha D, Rossignol C, Djurado E (2009) Influence of electrospraying parameters on the microstructure of La0.6Sr0.4Co0.2Fe0.8O3-δ films for SOFCs. J Solid State Chem 182:1742–1748

    Google Scholar 

  126. Marinha D, Hayd J, Dessemond L, Ivers-Tiffée E, Djurado E (2011) Performance of (La,Sr)(Co,Fe)O3-x double-layer cathode films for intermediate temperature solid oxide fuel cell. J Power Sources 196:5084–5090

    Google Scholar 

  127. Peters C, Weber A, Ivers-Tiffee E (2008) Nanoscaled (La0.5Sr0.5)CoO3-δ thin film cathodes for SOFC application at 500 °C < T < 700 °C. J Electrochem Soc 155:B730–B737

    Google Scholar 

  128. Hayd J, Dieterle L, Guntow U, Gerthsen D, Ivers-Tiffée E (2011) Nanoscaled La0.6Sr0.4CoO3-δ as intermediate temperature solid oxide fuel cell cathode: Microstructure and electrochemical performance. J Power Sources 196:7263–7270

    Google Scholar 

  129. Chang CL, Chu TF, Hsu CS, Hwang BH (2012) Preparation and characterization of reticular SSC cathode films by electrostatic spray deposition. J Eur Ceram Soc 32:915–923

    Google Scholar 

  130. Darbandi AJ, Hahn H (2009) Nanoparticulate cathode thin films with high electrochemical activity for low temperature SOFC applications. Solid State Ion 180:1379–1387

    Google Scholar 

  131. Baqué L, Caneiro A, Moreno MS, Serquis A (2008) High performance nanostructured IT-SOFC cathodes prepared by novel chemical method. Electrochem Commun 10:1905–1908

    Google Scholar 

  132. Kweon HJ, Kuk ST, Park HB, Park DG, Kim K (1996) Synthesis of La0.8Sr0.2CoO3 by sol–gel type reaction modified by poly(vinyl alcohol). J Mater Sci Lett 15:428–430

    Google Scholar 

  133. Kim BJ, Lee J, Yoo JB (1999) Sol–gel derived (La,Sr)CO3 thin films on silica glass. Thin Solid Films 341:13–17

    Google Scholar 

  134. Hwang HJ, Moon J, Awano M, Maeda K (2000) Sol–gel route to porous lanthanum cobaltite (LaCoO3) thin films. J Am Ceram Soc 83:2852–2854

    Google Scholar 

  135. Pagnaer J, Hardy A, Mondelaers D, Vanhoyland G, D'Haen J, Van Bael MK, Van den Rul H, Mullens J, Van Poucke LC (2005) Preparation of La0.5Sr0.5CoO3 powders and thin film from a new aqueous solution-gel precursor. Mat Sci Eng B-Solid 118:79–83

    Google Scholar 

  136. Westin G, Ottoson M, Pohl A (2008) Alkoxide route to La0.5Sr0.5CoO3 epitaxial thin films on SrTiO3. Thin Solid Films 516:4673–4678

    Google Scholar 

  137. Bonta PVS, O'Neal CB, Muthusami S (2005) Micro fuel cell technologies, advancements, and challenges. In: Shah RK, Ubong EU, Samuelsen S (eds) Proceedings of the 3rd international conference on fuel cell science, engineering, and technology. Amer Soc Mechanical Engineers, New York, NY

    Google Scholar 

  138. Morse JD (2007) Micro-fuel cell power sources. Int J Energy Res 31:576–602

    Google Scholar 

  139. La OGJ, In HJ, Crumlin E, Barbastathis G, Shao-Horn Y (2007) Recent advances in microdevices for electrochemical energy conversion and storage. Int J Energy Res 31:548–575

    Google Scholar 

  140. Litzelman SJ, Hertz JL, Jung W, Tuller HL (2008) Opportunities and challenges in materials development for thin film solid oxide fuel cells. Fuel Cells 8:294–302

    Google Scholar 

  141. Bieberle-Hütter A, Beckel D, Infortuna A, Muecke UP, Rupp JLM, Gauckler LJ, Rey-Mermet S, Muralt P, Bieri NR, Hotz N, Stutz MJ, Poulikakos D, Heeb P, Muller P, Bernard A, Gmur R, Hocker T (2008) A micro-solid oxide fuel cell system as battery replacement. J Power Sources 177:123–130

    Google Scholar 

  142. Evans A, Bieberie-Hütter A, Galinski H, Rupp JLM, Ryll T, Scherrer B, Tölke R, Gauckler LJ (2009) Micro-solid oxide fuel cells: status, challenges, and chances. Mon Chem 140:975–983

    Google Scholar 

  143. Muecke UP, Beckel D, Bernard A, Bieberle-Hütter A, Graf S, Infortuna A, Müller P, Rupp JLM, Schneider J, Gauckler LJ (2008) Micro solid oxide fuel cells on glass ceramic substrates. Adv Funct Mater 18:3158–3168

    Google Scholar 

  144. Tölke R, Bieberle-Hütter A, Evans A, Rupp JLM, Gauckler LJ (2012) Processing of Foturan® glass ceramic substrates for micro-solid oxide fuel cells. J Eur Ceram Soc 32:3229–3238

    Google Scholar 

  145. Rupp JLM, Drobek T, Rossi A, Gauckler LJ (2007) Chemical analysis of spray pyrolysis gadolinia-doped ceria electrolyte thin films for solid oxide fuel cells. Chem Mater 19:1134–1142

    Google Scholar 

  146. Rupp JLM, Solenthaler C, Gasser P, Muecke UP, Gauckler LJ (2007) Crystallization of amorphous ceria solid solutions. Acta Mater 55:3505–3512

    Google Scholar 

  147. Muecke UP, Graf S, Rhyner U, Gauckler LJ (2008) Microstructure and electrical conductivity of nanocrystalline nickel- and nickel oxide/gadolinia-doped ceria thin films. Acta Mater 56:677–687

    Google Scholar 

  148. Muecke UP, Akiba K, Infortuna A, Salkus T, Stus NV, Gauckler LJ (2008) Electrochemical performance of nanocrystalline nickel/gadolinia-doped ceria thin film anodes for solid oxide fuel cells. Solid State Ion 178:1762–1768

    Google Scholar 

  149. Shim JH, Chao CC, Huang H, Prinz FB (2007) Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chem Mater 19:3850–3854

    Google Scholar 

  150. Su PC, Chao CC, Shim JH, Fasching R, Prinz FB (2008) Solid oxide fuel cell with corrugated thin film electrolyte. Nano Lett 8:2289–2292

    Google Scholar 

  151. Evans A, Bieberle-Hütter A, Bonderer LJ, Stuckenholz S, Gauckler LJ (2011) Micro-solid oxide fuel cells using free-standing 3 mol.% yttria-stabilised-tetragonal-zirconia-polycrystal electrolyte foils. J Power Sources 196:10069–10073

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Martin Rørvik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Haavik, C., Rørvik, P.M. (2013). Conducting Oxide Thin Films. In: Schneller, T., Waser, R., Kosec, M., Payne, D. (eds) Chemical Solution Deposition of Functional Oxide Thin Films. Springer, Vienna. https://doi.org/10.1007/978-3-211-99311-8_25

Download citation

Publish with us

Policies and ethics