Skip to main content

Abstract

By means of ferroelectric nanograins various template based approaches to a registered assembly of functional materials is reviewed. At first the principles of seeds and seedlayers for orientation selection are discussed. Then the generation of artificial seed pattern by a number of top-down and bottom-up methods as well as combination of them are discussed. As such (1) e-beam lithography, (2) e-beam lithography combined with lift off processing, (3) soft template infiltration, (4) a self-assembly approach based on diblock-copolymer micelles and gold hard masks, and (5) FIB to generate defined nucleation sites on platinized silicon within an amorphous TiO2 layer are detailed. Functional registered ferroelectrics, mainly obtained by subsequent CSD processing, were characterized by means of surface probe microscopy (SPM) methods such as atomic force microscopy (AFM) and piezoelectric force microscopy (PFM). Embedding concepts for the template grown ferroelectric nanograins, which enable to maintain ferroelectric properties, complement the template controlled growth methods with regard to possible integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waser R (2012) Nanoelectronics and information technology, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park NY, Stephenson GB, Stolitchnov I, Tagantsev AK, Yamada DV, Taylor T, Streiffer S (2006) Ferroelectric thin films: review of materials, properties and applications. J Appl Phys 100:51606-1-46

    Google Scholar 

  3. Rüdiger A, Schneller T, Roelofs A, Tiedke S, Schmitz T, Waser R (2005) Nanosize ferroelectric oxides – tracking down the superparaelectric limit. Appl Phys Mater Sci Process 80:1247–1255

    Article  Google Scholar 

  4. Seifert A, Vojta A, Speck JS, Lange FF (1996) Microstructural instability in single crystal thin films. J Mater Res 11:1470–1482

    Article  Google Scholar 

  5. Roloefs A, Schneller T, Szot K, Waser R (2002) Piezoresponse force microscopyof lead titanate nanograins possibly reaching the limit of ferroelectricity. Appl Phys Lett 81:5231–5233

    Article  Google Scholar 

  6. Roelofs A, Schneller T, Szot K, Waser R (2003) Towards the limit of ferroelectric nanosized grains. Nanotechnology 14:250–253

    Article  Google Scholar 

  7. Szafraniak I, Harnagea C, Scholz R, Bhattacharyya S, Hesse D, Alexe M (2003) Ferroelectric epitaxial nanocrystals obtained by a self-patterning method. Appl Phys Lett 83:2211–2213

    Article  Google Scholar 

  8. Dawber M, Szafraniak I, Alexe M, Scott JF (2003) Self-patterning of arrays of ferroelectric capacitors: description by theory of substrate mediated strain interactions. J Phys Condens Matter 15:L667–L671

    Article  Google Scholar 

  9. Bühlmann S, Muralt P, Von Allmen S (2004) Lithography modulated self assembly of small ferroelectric Pb(Zr,Ti)O3 single crystals. Appl Phys Lett 84:2614–2616

    Article  Google Scholar 

  10. Clemens S, Schneller T, van der Hart A, Peter F, Waser R (2005) Registered deposition of nanoscale ferroelectric grains by template-controlled growth. Adv Mater 17:1357–1361

    Article  Google Scholar 

  11. Aoki K, Fukuda Y, Numata K, Nishimura A (1995) Effects of the titanium buffer layer on PZT crystallization process in sol–gel deposition technique. Jpn J Appl Phys 34:192–195

    Article  Google Scholar 

  12. Frey J, Schlenkrich F, Schönecker A (2001) Self-polarization and texture of wet chemically derived lead zirconate titanate thin films. Integr Ferroelectr 35:105–113

    Article  Google Scholar 

  13. Seifert A, Ledermann N, Hiboux S, Baborowski J, Muralt P, Setter N (2001) Processing optimization of solution derived PbZr1-xTixO3 thin films for piezoelectric applications. Integr Ferroelectr 35:159–166

    Article  Google Scholar 

  14. Muralt P, Maeder T, Sagalowicz L, Hiboux S, Scalese S, Naumovic D, Agostino RG, Xanthopoulos N, Mathieu HJ, Patthey L, Bullock EL (1998) Texture control of PbTiO3 and Pb(Zr,Ti)O3 thin films with TiO2 seeding. J Appl Phys 83:3835–3841

    Article  Google Scholar 

  15. Muralt P (2006) Texture control and seeded nucelation of nanosize structures of ferroelectric thin films. J Appl Phys 100:051605

    Article  Google Scholar 

  16. Miller KT, Lange FF, Marshall DB (1990) The instability of polycrystalline thin films: experiment and theory. J Mater Res 5:151–160

    Article  Google Scholar 

  17. Miller KT, Lange FF (1991) Highly oriented thin films of cubic zirconia on sapphire through grain growth seeding. J Mater Res 6:2387–2392

    Article  Google Scholar 

  18. Kambara H, Schneller T, Sakabe Y, Waser R (2009) Dielectric properties of highly c-axis oriented chemical solution deposition derived SrBi4Ti4O15 thin films. Phys Status Solidi A 206:157–166

    Article  Google Scholar 

  19. Dawley JT, Ong RJ, Clem PG (2002) Chemical solution deposition of <100 > −oriented SrTiO3 buffer layers on Ni substrates. J Mater Res 17:1678–1685

    Article  Google Scholar 

  20. Vasco E, Karthäuser S, Dittmann R, He J-Q, Jia C-L, Szot K, Waser R (2005) SrZrO3 nanopatterning using self-organized SrRuO3 as a template. Adv Mater 17:281

    Article  Google Scholar 

  21. Kronholz S, Rathgeber S, Karthäuser S, Kohlstedt H, Clemens S, Schneller T (2006) Self-assembly of diblock-copolymer micelles for template-based preparation of PbTiO3 nanograins. Adv Funct Mater 16:2346–2354

    Article  Google Scholar 

  22. Nagarajan V, Stanishevsky A, Ramesh R (2006) Ferroelectric nanostructures via a modified focused ion beam technique. Nanotechnology 17:338–343

    Article  Google Scholar 

  23. Bernal A, Tselev A, Kalinin S, Bassiri-Gharb N (2012) Free-standing ferroelectric nanotubes processed via soft-template infiltration. Adv Mater 24:1160–1165

    Article  Google Scholar 

  24. Spatz JP, Mossmer S, Hartmann C, Möller M, Herzog T, Krieger M, Boyen HG, Ziemann P, Kabius B (2000) Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir 16:407–415

    Article  Google Scholar 

  25. Haupt M, Miller S, Ladenburger A, Sauer R, Thonke K, Spatz JP, Riethmuller S, Möller M, Banhart F (2002) Semiconductor nanostructures defined with self-organizing polymers. J Appl Phys 91:6057–6059

    Article  Google Scholar 

  26. Glass R, Möller M, Spatz JP (2003) Block copolymer micelle nanolithography. Nanotechnology 14:1153–1160

    Article  Google Scholar 

  27. Bates FS, Frederickson GH (1990) Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem 41:525–557

    Article  Google Scholar 

  28. Milner ST (1991) Polymer brushes. Science 251:905–914

    Article  Google Scholar 

  29. Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617

    Article  Google Scholar 

  30. Lazzari M, López-Quintela MA (2003) Block copolymers as a tool for nano material fabrication. Adv Mater 15:1583–1594

    Article  Google Scholar 

  31. Kellogg GJ, Walton DG, Mayes AM, Lambooy P, Russell TP, Gallagher PD, Satija SK (1996) Observed surface energy effects in confined diblock copolymers. Phys Rev Lett 76:2503–2506

    Article  Google Scholar 

  32. Morkved TL, Lu M, Urbas AM, Ehrichs EE, Jaeger H, Mansky P, Russell TP (1996) Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273:931–933

    Article  Google Scholar 

  33. Mansky P, Russell TP, Hawker CJ, Mays J, Cook DC, Satija SK (1997) Interfacial segregation in disordered block copolymers: effect of tunable surface potentials. Phys Rev Lett 79:237–240

    Article  Google Scholar 

  34. Mansky P, Liu Y, Huang E, Russell TP, Hawker C (1997) Controlling polymer-surface interactions with random copolymer brushes. Science 275:1458–1460

    Article  Google Scholar 

  35. Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61:1267–1324

    Article  Google Scholar 

  36. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180

    Article  Google Scholar 

  37. Binning G, Rohrer H, Weibel E (1983) 7x7 Reconstruction on Si(111) resolved in real space. Phys Rev Lett 50:120–123

    Article  Google Scholar 

  38. Gruverman A, Kholkin A (2006) Nanoscale ferroelectrics processing, characterization and future trends. Rep Prog Phys 69:2443–2474

    Article  Google Scholar 

  39. Peter F (2006) Piezoresponse force microscopy and surface effects of perovskite ferroelectric nanostructures. Dissertation RWTH Aachen

    Google Scholar 

  40. Roelofs A (2004) Size effects in ferroelectric thin films. Dissertation RWTH Aachen

    Google Scholar 

  41. Peter F, Szot K, Waser R, Reichenberg B, Tiedke S, Spade J (2004) Piezoresponse in the light of surface adsorbates: Relevance of defined surface conditions for perovskite materials. Appl Phys Lett 85:2896–2898

    Article  Google Scholar 

  42. Peter F, Kubacki J, Szot K, Reichenberg B, Waser R (2006) Influence of adsorbates on the piezoresponse of KNbO3. Phys Status Solidi A 203:616–624

    Article  Google Scholar 

  43. Rüdiger A, Schneller T, Roelofs A, Schmitz T, Waser R (2005) Nanosize ferroelectric oxides-tracking down the superparaelectric limit. Appl Phys A 80:1247–1255

    Article  Google Scholar 

  44. Sheehan PE, Whitman LJ, King WP, Nelson BA (2004) Nanoscale deposition of solid inks via thermal dip pen nanolithography. Appl Phys Lett 85:1589–1591

    Article  Google Scholar 

  45. Szoszkiewicz R, Okada T, Jones SC, Li TD, King WP, Marder SR, Riedo E (2007) High-speed, sub-15 nm feature size thermochemical nanolithography. Nano Lett 7:1064–1069

    Article  Google Scholar 

  46. Wang D, Kodali VK, Underwood WD II, Jarvholm JE, Okada T, Jones SC, Rumi M, Dai Z, King WP, Marder SR, Curtis JE, Riedo E (2009) Thermochemical nanolithography of multifunctional nanotemplates for assembling nano-objects. Adv Funct Mater 19:3696–3702

    Article  Google Scholar 

  47. Wei Z, Wang D, Kim S, Kim S-Y, Hu Y, Yakes MK, Laracuente AR, Dai Z, Marder SR, Berger C, King WP, de Heer WA, Sheehan PE, Riedo E (2010) Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328:1373–1376

    Article  Google Scholar 

  48. Kim S, Bastani Y, Lu H, King WP, Marder S, Sandhage KH, Gruverman A, Riedo E, Bassiri-Gharb N (2011) Direct fabrication of arbitrary-shaped ferroelectric nanostructures on plastic, glass, and silicon substrates. Adv Mater 23:3786–3790

    Google Scholar 

  49. Steigerwald JM, Murarka SP, Gutmann RJ (1997) Chemical mechanical planarization of microelectronic materials. Wiley, New York

    Book  Google Scholar 

  50. ITRS (2011) The International Roadmap for Semiconductors: Interconnect. http://www.itrs.net/Links/2011ITRS/2011Chapters/2011Interconnect.pdf. Accessed 18 Feb 2013

  51. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430

    Article  Google Scholar 

  52. Maex K, Baklanov MR, Shamiryan D, Iacopi F, Brongersma SH, Yanovitskaya ZS (2003) Low dielectric constant materials for microelectronics. J Appl Phys 93:8793–8841

    Article  Google Scholar 

  53. Clemens S, Schneller T, Waser R, Rüdiger A, Peter F, Kronholz S, Schmitz T, Tiedke S (2005) Integration of ferroelectric lead titanate nanoislands for direct hysteresis measurements. Appl Phys Lett 87:142906

    Article  Google Scholar 

  54. Clemens S, Röhrig S, Rüdiger A, Schneller T, Waser R (2009) Embedded ferroelectric nanostructure arrays. Nanotechnology 20:075305–075310

    Article  Google Scholar 

  55. Clemens S, Dippel A-C, Schneller T, Waser R, Rüdiger A, Röhrig S (2008) Direct electrical characterization of embedded ferroelectric lead titanate nanoislands. J Appl Phys 103:034113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Clemens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Clemens, S., Schneller, T. (2013). Template Controlled Growth. In: Schneller, T., Waser, R., Kosec, M., Payne, D. (eds) Chemical Solution Deposition of Functional Oxide Thin Films. Springer, Vienna. https://doi.org/10.1007/978-3-211-99311-8_21

Download citation

Publish with us

Policies and ethics