Skip to main content

Stability of Some Finite Element Methods for Finite Elasticity Problems

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 509))

Abstract

We consider the finite elasticity problem for incompressible materials, proposing a simple bidimensional problem for which we provide indications on the solution stability. Furthermore, we study the stability of the discrete solution, obtained by means of some well-known finite elements, and we present several numerical experiments in order to evaluate and compare the performance of the different discrete schemes under investigation on the considered model problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • F. Armero. On the locking and stability of finite elements in finite deformation plane strain problems. Computers & Structures, 75:261–290, 2000.

    Article  Google Scholar 

  • D. N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the stokes equation. Calcolo, 21:337–344, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Auricchio, L. Beirão da Veiga, C. Lovadina, and A. Reali. An analysis of some mixed-enhanced finite element for plane linear elasticity. Computer Methods in Applied Mechanics and Engineering, 194:2947–2968, 2005a.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Auricchio, L. Beirão da Veiga, C. Lovadina, and A. Reali. A stability study of some mixed finite elements for large deformation elasticity problems. Computer Methods in Applied Mechanics and Engineering, 194:1075–1092, 2005b.

    Article  MATH  MathSciNet  Google Scholar 

  • K. J. Bathe. Finite Element Procedures. Prentice Hall, Englewood Cliffs, NJ, 1996.

    Google Scholar 

  • J. Bonet and R. D. Wood. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, 1997.

    Google Scholar 

  • D. Braess. Enhanced assumed strain elements and locking in membrane problems. Computer Methods in Applied Mechanics and Engineering, 165:155–174, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, 1991.

    MATH  Google Scholar 

  • P. G. Ciarlet. The Finite Element Methods for Elliptic Problems. North-Holland, Amsterdam, 1978.

    Google Scholar 

  • S. Glaser and F. Armero. On the formulation of enhanced strain finite elements in finite deformations. Engineering Computations, 14:759–791, 1997.

    Article  MATH  Google Scholar 

  • T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola, New York, 2000.

    Google Scholar 

  • O. Klaas, A. M. Maniatty, and M. S. Shephard. A stabilized mixed petrovgalerkin finite element method for finite elasticity. formulation for linear displacement and pressure interpolation. Computer Methods in Applied Mechanics and Engineering, 180:65–79, 1999.

    Article  MATH  Google Scholar 

  • P. Le Tallec. Existence and approximation results for nonlinear mixed problems: application to incompressible finite elasticity. Numerische Mathematik, 38:365–382, 1982.

    Article  MATH  Google Scholar 

  • P. Le Tallec. Numerical methods for nonlinear three-dimensional elasticity. In P. G. Ciarlet and J. L. Lions, editors, Handbook of Numerical Analysis, volume III, pages 465–622. Elsevier Science, North Holland, 1994.

    Google Scholar 

  • C. Lovadina. Analysis of strain-pressure finite element methods for the stokes problem. Numerical Methods for PDE’s, 13:717–730, 1997.

    MATH  MathSciNet  Google Scholar 

  • C. Lovadina and F. Auricchio. On the enhanced strain technique for elasticity problems. Computers & Structures, 81:777–787, 2003.

    Article  MathSciNet  Google Scholar 

  • A. M. Maniatty, Y. Liu, O. Klaas, and M. s. Shephard. Higher order stabilized finite element method for hyperelastic finite deformation. Computer Methods in Applied Mechanics and Engineering, 191:1491–1503, 2002.

    Article  MATH  Google Scholar 

  • J. C. Nagtegaal and D. D. Fox. Using assumed enhanced strain elements for large compressive deformation. International Journal of Solids and Structures, 33:3151–3159, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Pantuso and K. J. Bathe. A four-node quadrilateral mixed-interpolated elements for solids and fluids. Mathematical Models & Methods in Applied Sciences, 5:1113–1128, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Pantuso and K. J. Bathe. On the stability of mixed finite elements in large strain analysis of incompressible solids. Finite Elements in Analysis and Design, 28:83–104, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  • B. D. Reddy and J. C. Simo. Stability and convergence of a class of enhanced strain methods. SIAM Journal on Numerical Analysis, 32:705–1728, 1995.

    Article  MathSciNet  Google Scholar 

  • S. Reese, M. Küssner, and B. D. Reddy. A new stabilization technique for finite elements in non-linear elasticity. International Journal for Numerical Methods in Engineering, 44:1617–1652, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Reese and P. Wriggers. A stabilization technique to avoid hourglassing in finite elasticity. International Journal for Numerical Methods in Engineering, 48:79–109, 2000.

    Article  MATH  Google Scholar 

  • J. C. Simo and F. Armero. Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 33:1413–1449, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • J. C. Simo and M. S. Rifai. A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29:1595–1638, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • R. L. Taylor. FEAP: A Finite Element Analysis Program, programmer manual. http://www.ce.berkeley.edu/~rlt/feap/, 2001.

    Google Scholar 

  • P. Wriggers and S. Reese. A note on enhanced strain methods for large deformations. Computer Methods in Applied Mechanics and Engineering, 135:201–209, 1996.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 CISM, Udine

About this chapter

Cite this chapter

Auricchio, F., da Veiga, L.B., Lovadina, C., Reali, A. (2009). Stability of Some Finite Element Methods for Finite Elasticity Problems. In: Carstensen, C., Wriggers, P. (eds) Mixed Finite Element Technologies. CISM International Centre for Mechanical Sciences, vol 509. Springer, Vienna. https://doi.org/10.1007/978-3-211-99094-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99094-0_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99092-6

  • Online ISBN: 978-3-211-99094-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics