Lectures on Adaptive Mixed Finite Element Methods

  • C. Carstensen
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 509)


These lectures concern the three most simple model problems of elliptic second order partial differential equations which allow for some mixed formulations. The introduction to the Poisson problem, to the Stokes problem, and to linear elasticity is completely standard and hence kept rather short.

The first aim is a general discussion of the mixed formulations around various statements of the inf-sup condition often named after Ladyzhenskaya, Babuška, Brezzi. Some details on the implementation of Raviart-Thomas mixed finite elements in MATLAB complement this introduction.

The second aim is a particular outline of the author’s own research on a posteriori error analysis and adaptive algorithms of mixed finite element methods displayed for the Poisson problem. The presentation is motivated by the author’s research (2004); (1997),1999,(2005); (1998); (2000); (2001a),(b); (1999) with essential help of many researchers including S. Bartels, D. Braess, G. Dolzmann, S.A. Funken and R. Hoppe.


Finite Element Method BTTPDJBUFE XJUI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element analysis. Wiley-Interscience [John Wiley & Sons], New York, 2000.zbMATHGoogle Scholar
  2. A. Alonso. Error estimators for a mixed method. Numer. Math., 74(4): 385–395, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  3. D.N. Arnold and R.S. Falk. A uniformly accurate finite element method for the Reissner-Mindlin plate model. SIAM J. Numer. Anal., 26:1276–1290, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  4. D.N. Arnold and R. Winther. Mixed finite elements for elasticity. Numer. Math., 42:401–419, 2002.CrossRefMathSciNetGoogle Scholar
  5. D.N. Arnold, F. Brezzi, and J. Douglas. PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math., 1(2):347–367, 1984.zbMATHMathSciNetCrossRefGoogle Scholar
  6. I. Babuška and A.K. Azis. Survey Lectures on the Mathematical Foundations of the Finite Element Method. Academic Press.Google Scholar
  7. I. Babuška and A. Miller. A feedback finite element method with a posteriori error estimation: Part i, the finite element method and some properties of the a posteriori estimator. Comp. Methods Appl. Mech. Engrg., 61(1): 1–40, 1987.zbMATHCrossRefGoogle Scholar
  8. I. Babuška and W.C. Rheinboldt. A posteriori error analysis of finite element solutions for one-dimensional problems. SIAM Journal on Numerical Analysis, 18:565–589, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  9. I. Babuška and T. Strouboulis, The Finite Element Method and its Reliability, volume xii+802. The Clarendon Press Oxford University Press, 2001.Google Scholar
  10. C. Bahriawati and C. Carstensen. Three Matlab implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control. Computational Methods in Applied Mathematics, 5(4):333–361, 2005.zbMATHMathSciNetGoogle Scholar
  11. S. Bartels and C. Carstensen. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. II. Higher order FEM. Math. Comp., 71(239):971–994, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  12. R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math, 4:237–264, 1996.zbMATHMathSciNetGoogle Scholar
  13. R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, Cambridge University Press, pages 1–102, 2001.Google Scholar
  14. D. Braess. Finite Elements. Cambridge University Press, 1997.Google Scholar
  15. D. Braess and R. Verfürth. A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal, 33:2431–2444, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  16. D. Braess, C. Carstensen, and B.D. Reddy. Uniform convergence and a posteriori error estimators for the enhanced strain finite element method. Numer. Math., 96:461–479, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  17. S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods, volume 15. Springer Verlag, New York, Texts in Applied Mathematics, 1994.zbMATHGoogle Scholar
  18. F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, 1991.zbMATHGoogle Scholar
  19. C. Carstensen. A posteriori error estimate for the mixed finite element method. Math. Comp., 66:465–476, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  20. C. Carstensen. Quasi-interpolation and a a posteriori error analysis in finite element methods. M2AN, 33:1187–1202, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  21. C. Carstensen. A unifying theory of a posteriori finite element error control. Numer. Math., 100:617–637, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  22. C. Carstensen and G. Dolzmann. A posteriori error estimates for mixed FEM in elasticity. Numer. Math., 81(2):187–209, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  23. C. Carstensen and S.A. Funken. A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems. Math. Comp., 70(236):1353–1381, 2001a.zbMATHCrossRefMathSciNetGoogle Scholar
  24. C. Carstensen and S.A. Funken. Averaging technique for FE-a posteriori error control in elasticity. part i: Conforming FEM, part ii: λ-independent estimates, part iii: Locking-free conforming FEM. Comput. Methods Appl. Mech. Engrg., 190, 190, 191 (8–10):2483–2498, 4663–4675, 861–877, 2001b.zbMATHCrossRefMathSciNetGoogle Scholar
  25. C. Carstensen and S.A. Funken. Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods. East-West J. Numer. Math., 8(3):153–175, 2000. ISSN 0928-0200.zbMATHMathSciNetGoogle Scholar
  26. C. Carstensen and R. Hoppe. Error reduction and convergence for an adaptive finite element method. Math. Comp., 75(255):1037–1042, 2006.CrossRefMathSciNetGoogle Scholar
  27. C. Carstensen and R. Verfürth. Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal., 36(5):1571–1587, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  28. C. Carstensen, G. Dolzmann, S.A. Funken, and D.S. Helm. Locking-free adaptive mixed finite element methods in linear elasticity. Comput. Methods Appl. Mech. Engrg., 190(13–14):1701–1718, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  29. C. Carstensen, S. Bartels, and G. Dolzmann. A posteriori error estimates for nonconforming finite element methods. Numer. Math., 92:233–256, 2002a.zbMATHCrossRefMathSciNetGoogle Scholar
  30. C. Carstensen, S. Bartels, and R. Klose. An experimental survey of a posteriori Courant finite element error control for the Poisson equation. Adv. Comput. Math., 15(1–4):79–106, 2002b.MathSciNetGoogle Scholar
  31. P. Clément. Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér., 2:77–84, 1975.Google Scholar
  32. E. Dari, R. Durán, and C. Padra. Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp., 64(211): 1017–1033, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  33. E. Dari, R. Durán, C. Padra, and V. Vampa. A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér., 30(4):385–400, 1996.zbMATHGoogle Scholar
  34. K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems I. A linear model problem. SIAM J. Numer. Anal., 28:43–77, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  35. V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes Equations. Theory and algorithms. Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986.zbMATHGoogle Scholar
  36. R.H.W. Hoppe and B. Wohlmuth. Element-orientated and edge-orientated local error estimates for nonconforming finite element methods. Math. Modeling Numer. Anal., 30:237–263, 1996.zbMATHMathSciNetGoogle Scholar
  37. R. Kouhia and R. Stenberg. A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Engrg., 124(3):195–212, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  38. L. D. Marini. An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal, 22:493–496, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  39. R. Stenberg. A family of mixed finite elements for the elasticity problem. Numer. Math., 53(5):513–538, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  40. R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, 1996.Google Scholar
  41. R. Verfürth. A posteriori error estimators for the Stokes equations. Numer. Math., 55(3):309–325, 1989.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2009

Authors and Affiliations

  • C. Carstensen
    • 1
  1. 1.Department of MathematicsHumboldt-Universität BerlinGermany

Personalised recommendations