Skip to main content

Pulsed Gradient Spin-Echo NMR

  • Chapter
  • First Online:
Book cover Metallointercalators

Abstract

Translational diffusion (also referred to as self-diffusion, Brownian motion, or random walks) plays a vital role in all sorts of molecular dynamics in biological systems (e.g., ligand–DNA interactions, lipid–macromolecule interactions, and macromolecule aggregation). Due to its non-invasive nature, pulsed gradient spin-echo (PGSE) NMR has become a method of choice for the study of molecular dynamics and structural details of biological systems [1, 2]; in combination with magnetic resonance imaging (MRI), it allows (localised) in vivo diffusion measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Price WS. NMR studies of translational motion. 1st ed. Cambridge: Cambridge University Press; 2009.

    Book  Google Scholar 

  2. Krause-Heuer AM, Wheate NJ, Price WS, Aldrich-Wright JR. Chem Commun. 2009: 1210.

    Google Scholar 

  3. Jost W. Diffusion in solids, liquids, gases. New York: Academic; 1960.

    Google Scholar 

  4. Berg HC. Random walks in biology. Princeton: Princeton University Press; 1983.

    Google Scholar 

  5. Truskey GA, Yuan F, Katz DF. Transport phenomena in biological systems. Upper Saddle River: Pearson Prentice Hall; 2004.

    Google Scholar 

  6. Green PF. Kinetics, transport, and structure in hard and soft materials. Boca Raton, FL: Taylor & Francis; 2005.

    Book  Google Scholar 

  7. Stokes GG. Trans Cambridge Philos Soc. 1856;9:8.

    Google Scholar 

  8. Einstein A. Annalen der Physik (Leipzig). 1905;17:549.

    Article  CAS  Google Scholar 

  9. Sutherland W. Philos Mag. 1905;9:781.

    CAS  Google Scholar 

  10. Macchioni A, Ciancaleoni G, Zuccaccia C, Zuccaccia D. Chem Soc Rev. 2008;37:479.

    Article  CAS  Google Scholar 

  11. Van der Meeren P, Bogaert H, Stastny M, Vanderdeelen J, Baert L, Colloid Interface J. Science. 1993;160:117.

    Google Scholar 

  12. Lellig C, Wagner J, Hempelmann R, Keller S, Lumma D, Hartl W. J Chem Phys. 2004;121:7022.

    Article  CAS  Google Scholar 

  13. Molenat J. J Electroanal Chem. 1987;216:89.

    Article  CAS  Google Scholar 

  14. Momot KI, Kuchel PW. Concepts Magn Reson. 2006;28A:249.

    Article  CAS  Google Scholar 

  15. Woessner DE. Concepts Magn Reson. 1996;8:397.

    Article  CAS  Google Scholar 

  16. Stilbs P. Prog Nucl Magn Reson Spectrosc. 1987;19:1.

    Article  CAS  Google Scholar 

  17. Price WS. Concepts Magn Reson. 1997;9A:299.

    Article  Google Scholar 

  18. Stejskal EO, Tanner JE. J Chem Phys. 1965;42:288.

    Article  CAS  Google Scholar 

  19. Torrey HC. Phys Rev. 1956;104:563.

    Article  Google Scholar 

  20. Bleaney BI, Bleaney B. Electricity and magnetism. London: Oxford University Press; 1976.

    Google Scholar 

  21. Purcell EM. Electricity and magnetism. 2nd ed. New York: McGraw-Hill Book Co; 1985.

    Google Scholar 

  22. Cowan B. Nuclear magnetic resonance and relaxation. Cambridge: Cambridge University Press; 1997.

    Book  Google Scholar 

  23. Kuchel PW, Chapman BE, Bubb WA, Hansen PE, Durrant CJ, Hertzberg MP. Concepts Magn Reson. 2003;18A:56.

    Article  CAS  Google Scholar 

  24. Endre ZH, Kuchel PW, Chapman BE. Biochim Biophys Acta. 1984;803:137.

    Article  CAS  Google Scholar 

  25. Kuchel PW, Bulliman BT. NMR Biomed. 1989;2:151.

    Article  CAS  Google Scholar 

  26. Williams WD, Seymour EFW, Cotts RM. J Magn Reson. 1978;31:271.

    Google Scholar 

  27. Price WS, Stilbs P, Jönsson B, Söderman O. J Magn Reson. 2001;150:49.

    Article  CAS  Google Scholar 

  28. Zheng G, Price WS. Concepts Magn Reson. 2007;30A:261.

    Article  Google Scholar 

  29. Tanner JE. J Chem Phys. 1970;52:2523.

    Article  CAS  Google Scholar 

  30. Torres AM, Zheng G, Price WS. Magn Reson Chem. 2010;48:129.

    CAS  Google Scholar 

  31. Zheng G, Price WS. Prog Nucl Magn Reson Spectrosc. 2010;56:267.

    Article  CAS  Google Scholar 

  32. Zheng G, Price WS. J Biomol NMR. 2009;45:295.

    Article  CAS  Google Scholar 

  33. Momot KI, Kuchel PW. J Magn Reson. 2004;169:92.

    Article  CAS  Google Scholar 

  34. Jerschow A, Müller N. J Magn Reson. 1997;125:372.

    Article  CAS  Google Scholar 

  35. Luo RS, Liu ML, Mao XA. Spectrochim Acta A. 1897;1999:55.

    Google Scholar 

  36. Price WS, Elwinger F, Vigouroux C, Stilbs P. Magn Reson Chem. 2002;40:391.

    Article  CAS  Google Scholar 

  37. Lehn J-M. Angew Chem Int Ed. 1988;27:89.

    Article  Google Scholar 

  38. Hambley TW. Aust J Chem. 2008;61:647.

    Article  CAS  Google Scholar 

  39. Cohen Y, Avram L, Frish L. Angew Chem Int Ed. 2005;44:520.

    Article  CAS  Google Scholar 

  40. Stait-Gardner T, Anil Kumar PG, Price WS. Chem Phys Lett. 2008;462:331.

    Article  CAS  Google Scholar 

  41. Price WS. Concepts Magn Reson. 1998;10:197.

    Article  CAS  Google Scholar 

  42. Levitt MH. Spin dynamics: basics of nuclear magnetic resonance. 2nd ed. Hoboken: John Wiley Sons; 2008.

    Google Scholar 

  43. Arena G, Monsú Scolaro L, Pasternack RF, Romeo R. Inorg Chem. 1995;34:2994.

    Article  CAS  Google Scholar 

  44. Yu C, Chan KH-Y, Wong KM-C, Yam VW-W. Proc Natl Acad Sci USA. 2006;103:19652.

    Article  CAS  Google Scholar 

  45. Yam VW-W, Wong KM-C, Zhu N. Chem-Eur J. 2005;11:4353.

    Article  Google Scholar 

  46. Yam VW-W, Wong KM-C, Zhu N. J Am Chem Soc. 2002;124:6506.

    Article  CAS  Google Scholar 

  47. Koenig SH. Biopolymers. 1975;14:2421.

    Article  CAS  Google Scholar 

  48. Perrin F. J Phys Radium. 1934;5:497.

    Article  CAS  Google Scholar 

  49. Esfand R, Tomalia DA. Drug Discov Today. 2001;6:427.

    Article  CAS  Google Scholar 

  50. Kim J, Jung I-S, Kim S-Y, Lee E, Kang J-K, Sakamoto S, et al. J Am Chem Soc. 2000;122:540.

    Article  CAS  Google Scholar 

  51. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew Chem Int Ed. 2005;44:4844.

    Article  CAS  Google Scholar 

  52. Kim K, Selvapalam N, Ko YH, Park KM, Kim D, Kim J. Chem Soc Rev. 2007;36:267.

    Article  CAS  Google Scholar 

  53. Wheate NJ. Aust J Chem. 2006;59:354.

    Article  CAS  Google Scholar 

  54. Kemp S, Wheate NJ, Pisani MJ, Aldrich-Wright JR. J Med Chem. 2008;51:2787.

    Article  CAS  Google Scholar 

  55. Wheate NJ, Taleb RI, Krause-Heuer AM, Cook RL, Wang S, Higgins VJ, Aldrich-Wright JR.Dalton Trans. 2007: 5055.

    Google Scholar 

  56. Jeon WS, Kim E, Ko YH, Hwang IH, Lee JW, Kim SY, et al. Angew Chem Int Ed. 2005;44:87.

    Article  CAS  Google Scholar 

  57. Kemp S, Wheate NJ, Wang S, Collins JG, Ralph SF, Day AI, et al. J Biol Inorg Chem. 2007;12:969.

    Article  CAS  Google Scholar 

  58. Wheate NJ, Buck DP, Day AI, Collins JG. Dalton Trans. 2006;3:451.

    Article  Google Scholar 

  59. Wheate NJ, Day AI, Blanch RJ, Arnold AP, Cullinane C, Collins JG. Chem Commun. 2004:1424.

    Google Scholar 

  60. Wheate NJ, Kumar PGA, Torres AM, Aldrich-Wright JR, Price WS. J Phys Chem B. 2008;112:2311.

    Article  CAS  Google Scholar 

  61. Grant MP, Wheate NJ, Aldrich-Wright JR, J Chem Eng Data. 2009;54:323.

    Google Scholar 

  62. Bender ML, Kominyama M. Cyclodextrin chemistry. Berlin: Springer; 1978.

    Book  Google Scholar 

  63. Szejtli J. Cyclodextrins and their inclusion complexes. Budapest: Akademiai Kiado; 1982.

    Google Scholar 

  64. Wenz G. Angew Chem Int Ed. 1994;33:803.

    Article  Google Scholar 

  65. Krause-Heuer AM, Wheate NJ, Tilby MJ, Pearson DG, Ottley CJ, Aldrich-Wright JR. Inorg Chem. 2008;47:6880.

    Article  CAS  Google Scholar 

  66. Avram L, Cohen Y. J Org Chem. 2002;67:2639.

    Article  CAS  Google Scholar 

  67. Gutshe CD. The characterisation and properties of calixarenes. Cambridge: The Royal Society of Chemistry; 1989.

    Google Scholar 

  68. Arduini A, Pochini A, Reverberi S, Ungaro R. J Chem Soc, Chem Commun. 1984:981.

    Google Scholar 

  69. Wheate NJ, Broomhead JA, Collins JG, Day AI. Aust J Chem. 2001;54:141.

    Article  CAS  Google Scholar 

  70. Pisani MJ, Wheate NJ, Keene FR, Aldrich-Wright JR, Collins JG. J Inorg Biochem. 2009;103:373.

    Article  CAS  Google Scholar 

  71. Svenson S, Tomalia DA. Adv Drug Delivery Rev. 2005;57:2106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Price .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Zheng, G., Krause-Heuer, A.M., Price, W.S. (2011). Pulsed Gradient Spin-Echo NMR. In: Aldrich-Wright, J. (eds) Metallointercalators. Springer, Vienna. https://doi.org/10.1007/978-3-211-99079-7_7

Download citation

Publish with us

Policies and ethics