Skip to main content

Development of Metal Complexes as Potential Antimicrobials

  • Chapter
  • First Online:
Metallointercalators

Abstract

In 1969, the Surgeon General of the USA said that it was time “to close the book on infectious diseases” on the basis of the prolific success of antibiotics in the previous quarter century that had been widely prescribed [1]. This optimism, whilst seemingly justified at the time, was seriously misjudged, as the intervening 40 years have clearly demonstrated. This is because of the previously disregarded ability of bacteria to genetically mutate to an extent where future generations of bacteria proved immune to the effects of specific antibiotics – hence the need for novel approaches to combating microbial infections is as great as ever.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franklin TJ, Snow GA. Biochemistry and molecular biology of antimicrobial drug action. 6th ed. Heidelberg: Springer; 2005.

    Google Scholar 

  2. Palumbi SR. Science. 2001;293:1786.

    Article  CAS  Google Scholar 

  3. W.H. Organization, WHO/CDS/CSR/DRS/2001.2 ed., WHO, Geneva, 2001.

    Google Scholar 

  4. Bradbury BJ, Pucci MJ. Curr Opin Pharmacol. 2008;8:574.

    Article  CAS  Google Scholar 

  5. Hooper DC. Clin Infect Dis. 2000;31 Suppl 2:S24.

    Article  CAS  Google Scholar 

  6. Rattan A. Natl Med J India. 1999;12:162.

    CAS  Google Scholar 

  7. Axelsen PH. Essentials of antimicrobial pharmacology. NJ: Humana; 2002.

    Google Scholar 

  8. Atkinson Jr AJ, Abernethy DR, Daniels CE, Dedrick RL, Markey SP. Principles of clinical pharmacology. 2nd ed. New York: Academic; 2007.

    Google Scholar 

  9. Walsh C. Antibiotics:actions, origines, resistance. Washington, DC: ASM; 2003.

    Google Scholar 

  10. Wilcox MH. Expert Opin Pharmacother. 2005;6:2315.

    Article  CAS  Google Scholar 

  11. Coates AR, Hu Y. Br J Pharmacol. 2007;152:1147.

    Article  CAS  Google Scholar 

  12. Baraldi PG, Bovero A, Fruttarolo F, Preti D, Tabrizi MA, Pavani MG, et al. Med Res Rev. 2004;24:475.

    Article  CAS  Google Scholar 

  13. Pindur U, Jansen M, Lemster T. Curr Med Chem. 2005;12:2805.

    Article  CAS  Google Scholar 

  14. Richards AD, Rodger A. Chem Soc Rev. 2007;36:471.

    Article  CAS  Google Scholar 

  15. Smolina IV, Demidov VV, Frank-Kamenetskii MD. J Mol Biol. 2003;326:1113.

    Article  CAS  Google Scholar 

  16. Waksman SA, Woodruff HB. Proc Soc Exp Biol. 1940;45:609.

    CAS  Google Scholar 

  17. Waksman SA, Woodruff HB. J Bacteriol. 1940;40:581.

    CAS  Google Scholar 

  18. Sobell HM. Proc Natl Acad Sci USA. 1985;82:5328.

    Article  CAS  Google Scholar 

  19. Mehta MP, Bastin KT, Wiersma SR. Drugs. 1991;42:766.

    Article  CAS  Google Scholar 

  20. Walterhouse D, Watson A. Paediatr Drugs. 2007;9:391.

    Article  Google Scholar 

  21. Waring MJ, Wakelin LP. Nature. 1974;252:653.

    Article  CAS  Google Scholar 

  22. Kim JB, Lee GS, Kim YB, Kim SK, Kim YH. Int J Antimicrob Agents. 2004;24:613.

    Article  CAS  Google Scholar 

  23. Freyer MW, Buscaglia R, Nguyen B, Wilson WD, Lewis EA. Anal Biochem. 2006;355:259.

    Article  CAS  Google Scholar 

  24. Hannon MJ, Rodger A. Pharma Vis. 2002;autumn issue:14.

    Google Scholar 

  25. Nordell P, Westerlund F, Wilhelmsson LM, Nordén B, Lincoln P. Angew Chem Int Ed Engl. 2007;46:2203.

    Article  CAS  Google Scholar 

  26. Dwyer FP, Gyarfas EC, Rogers WP, Koch JH. Nature. 1952;170:190.

    Article  CAS  Google Scholar 

  27. Dwyer FP, Reid IK, Shulman A, Laycock GM, Dixson S. Aust J Exp Biol Med Sci. 1969;47:203.

    Article  CAS  Google Scholar 

  28. Rosenberg B, Vancamp L, Krigas T. Nature. 1965;205:698.

    Article  CAS  Google Scholar 

  29. Rosenberg B, Van Camp L, Grimley EB, Thomson AJ. J Biol Chem. 1967;242:1347.

    CAS  Google Scholar 

  30. Boulikas T, Vougiouka M. Oncol Rep. 2003;10:1663.

    CAS  Google Scholar 

  31. Fram RJ, Cusick PS, Wilson JM, Marinus MG. Mol Pharmacol. 1985;28:51.

    CAS  Google Scholar 

  32. Will J, Sheldrick WS, Wolters D. J Biol Inorg Chem. 2008;13:421.

    Article  CAS  Google Scholar 

  33. Panchal PK, Parekh HM, Pansuriya PB, Patel MN. J Enzyme Inhib Med Chem. 2006;21:203.

    Article  CAS  Google Scholar 

  34. Patel MN, Chhasatia MR, Patel SH, Bariya HS, Thakkar VR. J Enzyme Inhib Med Chem. 2009;24:715.

    Google Scholar 

  35. Kumar RS, Arunachalam S, Periasamy VS, Preethy CP, Riyasdeen A, Akbarsha MA. Eur J Med Chem. 2008;43:2082.

    Article  CAS  Google Scholar 

  36. Song YL, Li YT, Wu ZY. J Inorg Biochem. 2008;102:1691.

    Article  CAS  Google Scholar 

  37. Richards AD, Rodger A, Hannon MJ, Bolhuis A. Int J Antimicrob Agents. 2009;33:469.

    Article  CAS  Google Scholar 

  38. Meistermann I, Moreno V, Prieto MJ, Moldrheim E, Sletten E, Khalid S, et al. Proc Natl Acad Sci USA. 2002;99:5069.

    Article  CAS  Google Scholar 

  39. Raymond EA, Traub WH. Appl Microbiol. 1971;21:192.

    CAS  Google Scholar 

  40. Andrews JM. J Antimicrob Chemother. 2001;48 Suppl 1:5.

    Article  CAS  Google Scholar 

  41. Bauer AW, Roberts Jr CE, Kirby WM. Antibiot Annu. 1959;7:574.

    Google Scholar 

  42. Andrews JM. J Antimicrob Chemother. 2008;62:256.

    Article  CAS  Google Scholar 

  43. Struelens MJ. BMJ. 1998;317:652.

    Article  CAS  Google Scholar 

  44. Russell AD, Ahonkhai I, Rogers DT. J Appl Bacteriol. 1979;46:207.

    Article  CAS  Google Scholar 

  45. Wiles S, Hanage WP, Frankel G, Robertson B. Nat Rev Microbiol. 2006;4:307.

    Article  CAS  Google Scholar 

  46. Gill CJ, Abruzzo GK, Flattery AM, Misura AS, Bartizal K, Hickey EJ. Antimicrob Agents Chemother. 2007;51:3434.

    Article  CAS  Google Scholar 

  47. Rubin GM, Lewis EB. Science. 2000;287:2216.

    Article  CAS  Google Scholar 

  48. Carroll PM, Dougherty B, Ross-Macdonald P, Browman K, FitzGerald K. Pharmacol Ther. 2003;99:183.

    Article  CAS  Google Scholar 

  49. Blow NS, Salomon RN, Garrity K, Reveillaud I, Kopin A, Jackson FR, et al. PLoS Pathog. 2005;1:e8.

    Article  Google Scholar 

  50. Needham AJ, Kibart M, Crossley H, Ingham PW, Foster SJ. Microbiology. 2004;150:2347.

    Article  CAS  Google Scholar 

  51. Moy TI, Ball AR, Anklesaria Z, Casadei G, Lewis K, Ausubel FM. Proc Natl Acad Sci USA. 2006;103:10414.

    Article  CAS  Google Scholar 

  52. Massey A, Offman J, Macpherson P, Karran P. DNA Repair (Amst). 2003;2:73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Bolhuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Bolhuis, A., Richards, A.D. (2011). Development of Metal Complexes as Potential Antimicrobials. In: Aldrich-Wright, J. (eds) Metallointercalators. Springer, Vienna. https://doi.org/10.1007/978-3-211-99079-7_15

Download citation

Publish with us

Policies and ethics