Skip to main content

Hyperbaric Oxygen Preconditioning Reduces Postoperative Brain Edema and Improves Neurological Outcomes After Surgical Brain Injury

  • Conference paper
  • First Online:
Brain Edema XIV

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 106))

Abstract

The present study was designed to examine if hyperbaric oxygen preconditioning (HBO-PC) is neuroprotective in a mouse model of surgical brain injury (SBI). C57BL mice were administered 100% oxygen for 1 h at 2.5 ATA for 5 consecutive days and subjected to SBI on the following day. The HBO-PC + SBI animals were compared to sham and normoxia + SBI groups for brain water content in different brain regions at 24 and 72 h after surgery. Blood–brain barrier (BBB) permeability was evaluated using Evan’s blue dye extravasation at 24 h. Neurological assessment of the animals was done by a blinded observer at 24 and 72 h. The results showed that brain water content was significantly increased in the right (ipsilateral) frontal lobe surrounding the site of resection. This was attenuated by HBO-PC at 24 and 72 h. However, HBO-PC did not have any effect on the increased BBB permeability observed after SBI. Significant neurological deficits were observed after SBI. HBO-PC improved neurological deficits at 72 h on the 21-point sensorimotor scale and at 24 and 72 h on the wire hang and beam balance scoring. In conclusion, HBO-PC attenuates post-operative brain edema and improves neurological outcomes following SBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gu GJ, Li YP, Peng ZY, Xu JJ, Kang ZM, Xu WG, Tao HY, Ostrowski RP, Zhang JH, Sun XJ (2008) Mechanism of ischemic tolerance induced by hyperbaric oxygen preconditioning involves upregulation of hypoxia-inducible factor-1alpha and erythropoietin in rats. J Appl Physiol 104(4):1185–1191

    Article  PubMed  CAS  Google Scholar 

  2. Jadhav V, Zhang JH (2008) Surgical brain injury: prevention is better than cure. Front Biosci 13:3793–3797

    Article  PubMed  Google Scholar 

  3. Jadhav V, Matchett G, Hsu FP, Zhang JH (2007) Inhibition of Src tyrosine kinase and effect on outcomes in a new in vivo model of surgically induced brain injury. J Neurosurg 106(4):680–686

    Article  PubMed  CAS  Google Scholar 

  4. Jadhav V, Solaroglu I, Obenaus A, Zhang JH (2007) Neuroprotection against surgically induced brain injury. Surg Neurol 67(1):15–20

    Article  PubMed  Google Scholar 

  5. Li J, Liu W, Ding S, Xu W, Guan Y, Zhang JH, Sun X (2008) Hyperbaric oxygen preconditioning induces tolerance against brain ischemia–reperfusion injury by upregulation of antioxidant enzymes in rats. Brain Res 1210:223–229

    Article  PubMed  CAS  Google Scholar 

  6. Lo W, Bravo T, Jadhav V, Titova E, Zhang JH, Tang J (2007) NADPH oxidase inhibition improves neurological outcomes in surgically-induced brain injury. Neurosci Lett 414(3):228–232

    Article  PubMed  CAS  Google Scholar 

  7. Nie H, Xiong L, Lao N, Chen S, Xu N, Zhu Z (2006) Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits. J Cereb Blood Flow Metab 26(5):666–674

    Article  PubMed  CAS  Google Scholar 

  8. Ostrowski RP, Graupner G, Titova E, Zhang J, Chiu J, Dach N, Corleone D, Tang J, Zhang JH (2008) The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia. Neurobiol Dis 29(1):1–13

    Article  PubMed  CAS  Google Scholar 

  9. Prass K, Wiegand F, Schumann P, Ahrens M, Kapinya K, Harms C, Liao W, Trendelenburg G, Gertz K, Moskowitz MA, Knapp F, Victorov IV, Megow D, Dirnagl U (2000) Hyperbaric oxygenation induced tolerance against focal cerebral ischemia in mice is strain dependent. Brain Res 871(1):146–150

    Article  PubMed  CAS  Google Scholar 

  10. Qin Z, Song S, Xi G, Silbergleit R, Keep RF, Hoff JT, Hua Y (2007) Preconditioning with hyperbaric oxygen attenuates brain edema after experimental intracerebral hemorrhage. Neurosurg Focus 22(5):E13

    Article  PubMed  Google Scholar 

  11. Veltkamp R, Siebing DA, Sun L, Heiland S, Bieber K, Marti HH, Nagel S, Schwab S, Schwaninger M (2005) Hyperbaric oxygen reduces blood-brain barrier damage and edema after transient focal cerebral ischemia. Stroke 36(8):1679–1683

    Article  PubMed  Google Scholar 

  12. Wada K, Miyazawa T, Nomura N, Tsuzuki N, Nawashiro H, Shima K (2001) Preferential conditions for and possible mechanisms of induction of ischemic tolerance by repeated hyperbaric oxygenation in gerbil hippocampus. Neurosurgery 49(1):160–166

    PubMed  CAS  Google Scholar 

  13. Zhang JH (2007) Hyperbaric oxygen in neurological diseases. Neurol Res 29(2):113–115

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by grants from NIH NS45694, NS53407, and NS43338 to JHZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this paper

Cite this paper

Jadhav, V., Ostrowski, R.P., Tong, W., Matus, B., Chang, C., Zhang, J.H. (2010). Hyperbaric Oxygen Preconditioning Reduces Postoperative Brain Edema and Improves Neurological Outcomes After Surgical Brain Injury. In: Czernicki, Z., Baethmann, A., Ito, U., Katayama, Y., Kuroiwa, T., Mendelow, D. (eds) Brain Edema XIV. Acta Neurochirurgica Supplementum, vol 106. Springer, Vienna. https://doi.org/10.1007/978-3-211-98811-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-98811-4_40

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-98758-2

  • Online ISBN: 978-3-211-98811-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics