Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 508))

Abstract

A computational framework is presented for integrating the electrical, mechanical and biochemical functions of the heart. The gross anatomy as well as microstructural details are presented and the required imaging techniques. Active tension development of cardiac myocytes and the relation to cellular metabolism and electrophysiology are discussed in the framework of ontologies and markup language standards that will help link the tissue and organ level models to the vast array of genomic and proteomic data that are now available in web-accessible databases. Finite element techniques are used to solve the large deformation soft tissue mechanics using orthotropic constitutive laws based on the measured fibre-sheet structure of myocardial (heart muscle) tissue. The reaction-diffusion equations governing electrical current flow in the heart are solved on a grid of deforming material points which access systems of ODEs representing the cellular processes underlying the cardiac action potential. Navier-Stokes equations are solved for coronary blood flow in a system of branching blood vessels embedded in the deforming myocardium and the delivery of oxygen and metabolites is coupled to the energy dependent cellular processes. The frame-work presented here for modelling coupled physical conservation laws at the tissue and organ levels is also appropriate for other organ systems in the body and we briefly discuss applications to the lungs and the musculo-skeletal system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • M. J. Ackerman. The visible human project. Proc. IEEE 86:504–511, 1998.

    Google Scholar 

  • J. A. Armour and W. C. Randall. Structural basis for cardiac function. Am. J. Physiol. 218:1517–1523, 1970.

    Google Scholar 

  • R. J. Atkin and N. Fox. An Introduction to the Theory of Elasticity. Longman Group Ltd., London, 1980.

    MATH  Google Scholar 

  • K. Bachhuber and D. Frosch. Melamine resins, a new class of water-soluble embedding media for electron microscopy. J. Microscopy 130:1–9, 1983.

    Google Scholar 

  • D. H. Bergel and P. J. Hunter. The mechanics of the heart. In H. H. C. Hwang, D. R. Gross, and D. J. Patel, editors, Quantitative Cardiovascular Studies, Clinical and Research Applications of Engineering Principles, Chapter 4, pages 151–213. University Park Press, Baltimore, 1979.

    Google Scholar 

  • J. E. Bischoff, E. M. Arruda, and K. Grosh. A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69:570–579, 2002.

    MATH  Google Scholar 

  • J. Boutet de Monvel, E. Scarfone, S. Le Calvez, and M. Ulfendahl. Image-adaptive deconvolution for three-dimensional deep biological imaging. Biophys. J. 85:3991–4001, 2003.

    Google Scholar 

  • C. P. Bradley, A. J. Pullan, and P. J. Hunter. Geometric modeling of the human torso using cubic hermite elements. Ann. Biomed. Eng. 76:96–111, 1997.

    Google Scholar 

  • M. Buist, G. B. Sands, P. J. Hunter, and A. J. Pullan. A deformable finite element derived finite difference method for cardiac activation problems. Ann. Biomed. Eng. 31:577–588, 2003.

    Google Scholar 

  • K. S. Burrowes, M. H. Tawhai, and P. J. Hunter. Modeling RBC and neutrophil distribution through an anatomically based pulmonary capillary network. Ann. Biomed. Eng. 32:585–595, 2004.

    Google Scholar 

  • D. Caillerie, A. Mourad, and A. Raoult. Cell-to-muscle homogenisation. application to a constitutive law for the myocardium. ESAIM Math. Model. Numer. Anal. 37:681–698, 2003.

    MathSciNet  MATH  Google Scholar 

  • K. Carlsson. The influence of specimen refractive index, detector signal integration, and non-uniform scan speed on the imaging properties in confocal microscopy. J. Microscopy 163:167–178, 1991.

    Google Scholar 

  • J. B. Caulfield and T. K. Borg. The collagen network of the heart. Laboratory Investigation 40:364–372, 1979.

    Google Scholar 

  • S. G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. on Image Processing 9:1532–1646, 2000.

    MathSciNet  MATH  Google Scholar 

  • Z. Chen and R. Ning. Three dimensional point spread function measurement of cone-beam computed tomography system by iterative edge blurring algorithm. Phys. Med. Biol. 49:1865–1880, 2004.

    Google Scholar 

  • F. F. T. Ch’en, R. D. Vaughan-Jones, K. Clark, and D. Noble. Modelling myocardial ischaemia and reperfusion. Prog. Biophys. Molec. Biol. 69:497–515, 1998.

    Google Scholar 

  • Y. I. Cho and R. Kensey. Effects of the non-newtonian viscosity of blood flows in a diseased arterial vessel. Biorheology 28:241–262, 1991.

    Google Scholar 

  • A. Cohen. A Padé approximant to the inverse langevin function. Rheol. Acta 30:270–273, 1991.

    Google Scholar 

  • K. D. Costa, P. J. Hunter, J. M. Rogers, J. M. Guccione, L. K. Waldman, and A. D McCulloch. A three-dimensional finite element method for large elastic deformations of ventricular myocardium: I-Cylindrical and spherical polar coordinates. J. Biomech. Eng. 118:542–463, 1996a.

    Google Scholar 

  • K. D. Costa, P. J. Hunter, J. S. Wayne, L. K. Waldman, J. M. Guccione, and A. D. McCulloch. A three-dimensional finite element method for large elastic deformations of ventricular mycardium: II-Prolate spheroidal coordinates. J. Biomech. Eng. 118:464–472, 1996b.

    Google Scholar 

  • K. D. Costa, J. W. Holmes, and A. D. McCulloch. Modeling cardiac mechanical properties in three dimensions. Philos. T. Roy. Soc. A 359:1233–1250, 2001.

    MATH  Google Scholar 

  • E. J. Crampin, M. Halstead, P. J. Hunter, P. Nielsen, D. Noble, N. Smith, and M. Tawhai. Computational physiology and the physiome project. Exp. Physiol. 89:1–26, 2004.

    Google Scholar 

  • J. C. Criscione. Rivlin’s representation formula is ill-conceived for the determination of response functions via biaxial testing. J. Elasticity 70:129–147, 2003.

    MathSciNet  MATH  Google Scholar 

  • J. Demmel, S. Eisenstat, J. Gilbert, X. Li, and J. Liu. A supernodal approach to sparse partial pivoting. J. Math. Anal. Appl. 20:720–755, 1999a.

    MathSciNet  MATH  Google Scholar 

  • J. Demmel, J. Gilbert, and X. Li. An asynchronous parallel supernodal algorithm for sparse gaussian elimination. J. Math. Anal. Appl. 20:915–952, 1999b.

    MathSciNet  MATH  Google Scholar 

  • D. DiFrancesco and D. Noble. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. T. Roy. Soc. B 307:353–398, 1985.

    Google Scholar 

  • S. Dokos, B. H. Smaill, A. A. Young, and I. J. LeGrice. Shear properties of passive ventricular myocardium. Am. J. Physiol. 283:H2650–H2659, 2002.

    Google Scholar 

  • P. C. Dolber and M. S. Spach. Conventional and confocal fluorescence microscopy of collagen fibers in the heart. J. Histochem. Cytochem. 41:465–469, 1993.

    Google Scholar 

  • D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455, 1994.

    MathSciNet  MATH  Google Scholar 

  • J. M. Downey and E. S. Kirk. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ. Res. 36:753–760, 1975.

    Google Scholar 

  • J. W. Fernandez and P. J. Hunter. An anatomically based patient-specific finite element model of patella articulation: Towards a diagnostic tool. Biomech. Model. Mechanobio. 4:20–38, 2005.

    Google Scholar 

  • J. W. Fernandez, P. Mithraratne, S. F. Thrupp, M. T. Tawhai, and P. J. Hunter. Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobio. 2:139–155, 2004.

    Google Scholar 

  • J. W. Fernandez, A. Ho, S. Walt, I. A. Anderson, and P. J. Hunter. A cerebral palsy assessment tool using anatomically based geometries and free-form deformation. Biomech. Model. Mechanobio. 4:39–56, 2005.

    Google Scholar 

  • G. Fischer, B. Tilg, R. Modre, G. J. M. Huiskamp, J. Fetzer, W. Rucker, and P. Wach. A bidomain model based bem-fem coupling formulation for anisotropic cardiac tissue. Ann. Biomed. Eng. 28:1229–1243, 2000.

    Google Scholar 

  • Y. C. Fung. Biorheology of soft tissues. Biorheology 10:139–155, 1973.

    Google Scholar 

  • Y. C. Fung. Biomechanics. Mechanical Properties of Living Tissues, 2nd edition. Springer-Verlag, New York, 1993.

    Google Scholar 

  • J. L. Greenstein and R. L. Winslow. An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. Biophys. J. 83:2918–2945, 2002.

    Google Scholar 

  • J. M. Guccione, A. D. McCulloch, and L. K. Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113:42–55, 1991.

    Google Scholar 

  • J. M. Guccione, I. Motabarzadeh, and G. I. Zahalak. A distribution-moment model of deactivation in cardiac muscle. J. Biomech. 31:1069–1073, 1998.

    Google Scholar 

  • A. Guz, D. H. Bergel, and D. L. Brutsaert. The Physiological Basis of Starling’s Law of the Heart. Elsevier, 1974.

    Google Scholar 

  • S. Hartmann and P. Neff. Polyconvexity of generalized polynomial type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Structures 40:2767–2791, 2003.

    MathSciNet  MATH  Google Scholar 

  • S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J. Microscopy 169:391–405, 1993.

    Google Scholar 

  • C. S. Henriquez. Simulating the electrical behaviour of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng. 21:1–77, 1993.

    Google Scholar 

  • T. L. Hill. Theoretical formalism for the sliding filament model of contraction of striated muscle. Part II. Prog. Biophys. Molec. Biol. 29:105–159, 1975.

    Google Scholar 

  • T. L. Hill. Free Energy Transduction and Biochemical Cycle Kinetics. Springer-Verlag, New York, 1989.

    Google Scholar 

  • A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In R. S. Stepleman, editor, Scientific Computing, pages 55–64. North Holland, Amsterdam, 1983.

    Google Scholar 

  • A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. London 117:500–544, 1952.

    Google Scholar 

  • A. L. Hodgkin. Chance and design in electrophysiology: an informal account of certain experiments on nerve carried out between 1934 and 1952. J. Physiol. London 263:1–21, 1976.

    Google Scholar 

  • H. Holloway, D. Gerneke, C. R. Green, I. J. LeGrice, and G. B. Sands. Resin embedding of immunofluorescently labelled tissue. In ACCM-18, 2004.

    Google Scholar 

  • G. A. Holzapfel, T. C. Gasser, and R. W. Ogden. A new constitutive frame-work for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48, 2000.

    MathSciNet  MATH  Google Scholar 

  • A. Horowitz, Y. Lanir, F. C. P. Yin, M. Perl, I. Sheinman, and R. K. Strumpf. Structural three-dimensional constitutive law for the passive myocardium. J. Biomech. Eng. 110:200–207, 1998.

    Google Scholar 

  • M. Howatson Tawhai, A. J. Pullan, and P. J. Hunter. Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 28:793–802, 2000.

    Google Scholar 

  • J.D. Humphrey, R. K. Strumpf, and F. C. P. Yin. Determination of constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 112:333–339, 1990.

    Google Scholar 

  • P. J. Hunter and T. K. Borg. Integration from proteins to organs: the physiome project. Nat. Rev. Mol. Cell Bio. 4:237–243, 2003.

    Google Scholar 

  • P. J. Hunter and B. H. Smaill. The analysis of cardiac function: A continuum approach. Prog. Biophys. Molec. Biol. 52:101–164, 1988.

    Google Scholar 

  • P. J. Hunter, A. D. McCulloch, P. M. F. Nielsen, and B. H. Smaill. A finite element model of passive ventricular mechanics. In R. L. Spilker and B. R. Simon, editors, Computational Methods in Bioengineering. ASME, BED, New York, 1988.

    Google Scholar 

  • P. J. Hunter, M. P. Nash, and G. B. Sands. Computational electromechanics of the heart. In A. V. Panfilov and A. V. Holden, editors, Computational Biology of the Heart, pages 345–407. John Wiley & Sons, Chichester, 1997.

    Google Scholar 

  • P. J. Hunter, A. D. McCulloch, and H. E. D. J. ter Keurs. Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Molec. Biol. 69:289–331, 1998.

    Google Scholar 

  • P. J. Hunter, P. Robbins, and D. Noble. The IUPS human physiome project. Eur. J. Physiol. 445:1–9, 2002.

    Google Scholar 

  • P. J. Hunter, A. J. Pullan, and B. H. Smaill. Modeling total heart function. Ann. Rev. Biomed. Eng. 5:147–177, 2003.

    Google Scholar 

  • P. J. Hunter, N. P. Smith, J. Fernandez, and M. Tawhai. Integration from proteins to organs: The IUPS physiome project. Mech. Ageing Dev. 126:187–192, 2005.

    Google Scholar 

  • P. J. Hunter. Finite element analysis of cardiac muscle mechanics. Ph.D. Dissertation, University of Oxford, 1975.

    Google Scholar 

  • P. J. Hunter. Myocardial constitutive laws for continuum models of the heart. In S. Sideman and R. Beyer, editors, Molecular and Subcellular Cardiology: Effects of Structure and Function, volume 382, pages 303–318. Plenum Press, New York, 1995.

    Google Scholar 

  • A. F. Huxley. Muscle structure and theories of contraction. Prog. Biophys. and Biophys. Chem. 7:257–318, 1957.

    Google Scholar 

  • M. Itskov and N. Aksel. A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Structures 41:3833–3848, 2004.

    MathSciNet  MATH  Google Scholar 

  • M. D. Jacobs, P. J. Donaldson, M. B. Cannell, and C. Soeller. Resolving morphology and antibody labeling over large distances in tissue sections. Microsc. Res. Tech. 62:83–91, 2003.

    Google Scholar 

  • S. Jafri, J. Rice, and R. Winslow. Cardiac Ca2+ dynamics: the role of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys. J. 74:1149–1168, 1998.

    Google Scholar 

  • B. Kantor, H. M. Kwon, E. L. Ritman, D. R. Holmes, and R. S. Schwartz. Images in cardiology imaging the coronary microcirculation: 3D micro-CT of coronary vasa vasorum. Int. J. Cardiovasc. Intervent 2:79, 1999.

    Google Scholar 

  • G. S. Kassab and Y. C. Fung. Topology and dimensions of pig coronary capillary network. Am. J. Physiol. 267:H319–H325, 1994.

    Google Scholar 

  • G. S. Kassab, C. A. Rider, N. J. Tang, and Y. C. Fung. Morphometry of pig coronary arterial trees. Am. J. Physiol. 265:H350–H365, 1993.

    Google Scholar 

  • L. N. Katz. Physiology of the Heart. Raven Press, New York, 1977.

    Google Scholar 

  • M. Kawai and W. P. Brandt. Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J. Muscle Res. Cell Motil. 3:279–303, 1980.

    Google Scholar 

  • M. Kawai, Y. Saeki, and Y. Zhao. Crossbridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret. Circ. Res. 73:35–50, 1993a.

    Google Scholar 

  • M. Kawai, Y. Zhao, and H. Halvorson. Elementary steps of contraction probed by sinusoidal analysis technique in rabbit psoas fibers. Adv. Exp. Med. Biol. 332:567–580, 1993b.

    Google Scholar 

  • J. Keener and J. Sneyd. Mathematical Physiology. Springer-Verlag, New York, 1998.

    MATH  Google Scholar 

  • R. Krams, P. Sipkema, and N. Westerhof. Varying elastance concept may explain coronary systolic flow impediment. Am. J. Physiol. 257:H1471–H1479, 1989.

    Google Scholar 

  • W. Krassowska and J. C. Neu. Effective boundary conditions for syncytial tissues. IEEE T. Biomed. Eng. 41:143–150, 1994.

    Google Scholar 

  • Y. Lanir. Constitutive equations for fibrous connective tissues. J. Biomech. 16:1–12, 1983.

    Google Scholar 

  • I. J. LeGrice, B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, and P. J. Hunter. Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. Heart Circ. Physiol. 269:H571–H582, 1995.

    Google Scholar 

  • I. J. LeGrice. A finite element model of myocardial structure: Implications for electrical activation in the heart. Ph.D. Dissertation, University of Auckland, New Zealand, 1992.

    Google Scholar 

  • X. S. Li and J. W. Demmel. Super LU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Software 29:110–140, 2003.

    MathSciNet  MATH  Google Scholar 

  • C.-H. Luo and Y. Rudy. A model of the ventricular cardiac action potential: Depolarisation, repolarisation, and their interaction. Circ. Res. 68:1501–1526, 1991.

    Google Scholar 

  • C.-H. Luo and Y. Rudy. A dynamic model of the cardiac ventricular action potential: I. simulations of ionic currents and concentration changes. Circ. Res. 74:1071–1096, 1994.

    Google Scholar 

  • J. B. MacCallum. On the muscular architecture and growth of the ventricles of the heart. John Hopkins Hospital Repertoire 9:307–335, 1900.

    Google Scholar 

  • F. P. Mall. On the muscular architecture of the ventricles of the human heart. Am. J. Anat. 11:211–266, 1911.

    Google Scholar 

  • S. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11:674–693, 1989.

    MATH  Google Scholar 

  • L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs, New Jersey, 1969.

    Google Scholar 

  • S. Matsuoka, N. Sarai, H. Jo, and A. Noma. Simulation of ATP metabolism in cardiac excitation-contraction coupling. Prog. Biophys. Molec. Biol. 85:279–299, 2004.

    Google Scholar 

  • S. F. McCormick. Multilevel Adaptive Methods for Partial Differential Equations. SIAM, 1989.

    Google Scholar 

  • M. R. McLean and J. Prothero. Coordinated three-dimensional reconstruction from serial sections at macroscopic and microscopic levels of resolution: The human heart. Anat. Rec. 219:374–377, 434–439, 1987.

    Google Scholar 

  • J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello. Three-dimensional imaging by deconvolution microscopy. Methods 19:373–385, 1999.

    Google Scholar 

  • R. M. Miura. Analysis of excitable cell models. J. Comput. Appl. Math. 144:29–47, 2002.

    MathSciNet  MATH  Google Scholar 

  • A. L. Muzikant and C. S. Henriquez. Bipolar stimulation of a three-dimensional bidomain incorporating rotational anisotropy. IEEE Trans. Biomed. Eng. 45:449–462, 1998.

    Google Scholar 

  • M. P. Nash and P. J. Hunter. Computational mechanics of the heart. J. Elasticity 61:113–141, 2000.

    MathSciNet  MATH  Google Scholar 

  • D. G. Nicholls and S. J. Ferguson. Bioenergetics 3. Academic Press, London. 2002.

    Google Scholar 

  • D. P. Nickerson and P. J. Hunter. The Noble cardiac ventricular electrophssiology models in CellML. Prog. Biophys. Molec. Biol. 90:346–359, 2006.

    Google Scholar 

  • D. P. Nickerson, N. P. Smith, and P. J. Hunter, A model of cardiac cellular electromechanics. Philos. T. Roy. Soc. A 359:1159–1172, 2001.

    MATH  Google Scholar 

  • S. A. Niederer, P. J. Hunter, and N. P. Smith. A quantitative analysis of cardiac myocyte relaxarion: A simulation study. Biophys. J. 90:1697–1722, 2006.

    Google Scholar 

  • P. M. F. Nielsen. I. J. LeGrice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. Cell Physiol. 260:H1365–H1378, 1991.

    Google Scholar 

  • P. M. F. Nielsen. The anatomy of the heart: A finite element model. Ph.D. Dissertation, University of Auckland, 1987.

    Google Scholar 

  • D. Noble, A. Varghese, P. Kohl, and P. Noble. Improved guinea-pig ventricular cell model incorporating a diadic space, i Kr , and i Ks , and length-and tension-dependent processes. Canad. J. Cardiol. 14:123–134, 1998.

    Google Scholar 

  • J. T. Oden. Finite Elements of Nonlinear Continua. McGraw-Hill, New York, 1972.

    MATH  Google Scholar 

  • L. H. Opie. The Heart: Physiology, from Cell to Circulation, 3rd edition. Lippincott-Raven, 1998.

    Google Scholar 

  • J. B. Pawley. Handbook of biological confocal microscopy, 2nd edition. Plenum Press, New York, 1995.

    Google Scholar 

  • K. Perktold, M. Resch, and R. O. Peter. Three-dimensional numerical analysis of the pulsatile flow and wall shear stress in the carotid artery bifurcation. J. Biomech. 24:409–420, 1991.

    Google Scholar 

  • G. Piazzesi and V. Lombardi. A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys. J. 68:1966–1979, 1995.

    Google Scholar 

  • R. Plonsey and R. C. Barr. Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities. Biophys. J. 45:557–571, 1984.

    Google Scholar 

  • W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipies in FORTRAN, the art of scientific computing, 2nd edition. Cambridge University Press, 1992.

    Google Scholar 

  • A. R. Pries, K. Ley, M. Claasen, and P. Gaehtgens. Red cell distribution at microvascular bifuractions. Microvasc. Res. 38:81–101, 1989.

    Google Scholar 

  • A. R. Pries, D. Neuhaus, and P. Gaehtgens. Blood viscosity in tube flow: dependance on diameter and hematocrit. Am. J. Physiol. 263:H1770–H1778, 1992.

    Google Scholar 

  • J. J. Rice and P. P. de Tombe. Aproaches to modeling crossbridges and calcium-dependent activation in cardiac muscle. Prog. Biophys. Molec. Biol. 85:179–195, 2004.

    Google Scholar 

  • T. F. Robinson, L. Cohen-Gould, and S. M. Factor. Skeletal framework of mammalian heart muscle. arrangement of inter-and pericellular connective tissue structures. Laboratory Investigation 49:482–498, 1983.

    Google Scholar 

  • M. A. Rossi. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J. Hypertension 16:1031–1041, 1998.

    Google Scholar 

  • B. J. Roth and J. P. Wikswo, Jr. A bidomain model for the extracellular potential and magnetic field of cardiac tissue. IEEE Trans. Biomed. Eng. 33:467–469, 1986.

    Google Scholar 

  • B. J. Roth. Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans. Biomed. Eng. 44:326–328, 1997.

    Google Scholar 

  • S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Third International conference on 3-D digital imaging and modeling (3DIM 2001 Proceedings), pages 145–152, 2001.

    Google Scholar 

  • J. C. Russ. The image processing handbook. CRC Press, Boca Raton, Florida, 2002.

    Google Scholar 

  • Y. Saeki, M. Kawai, and Y. Zhao. Comparison of crossbridge dynamics between intact and skinned myocardium from ferret right ventricles. Circ. Res. 68:772–781, 1991.

    Google Scholar 

  • G. B. Sands, D. A. Gerneke, D. A. Hooks, C. R. Green, B. H. Smaill, and I. J. LeGrice. Automated imaging of extended tissue volumes using confocal microscopy. Microsc. Res. Tech. 67:227–239, 2006.

    Google Scholar 

  • H. Schmid, M. P. Nash, A. A. Young, and P. J. Hunter. Myocardial material parameter estimation—a comparative study for simple shear. J. Biomech. Eng. 128:742–750, 2006.

    Google Scholar 

  • H. Schmid. Passive Myocardial Mechanics—Constitutive Laws and Material Parameter Estimation. Ph.D. Dissertation, University of Auckland, New Zealand, 2006.

    Google Scholar 

  • O. H. Schmitt. Biological information processing using the concept of interpenetrating domains. In K. N. Leibovic, editor, Information Processing in the Nervous System, pages 325–331. Springer-Verlag, New York, 1969.

    Google Scholar 

  • R. M. Shaw and Y. Rudy. Electrophysical effects of acute myocardial ischemia: a theoretical study of altered cell excitability. Cardiovasc. Res. 35:256–272, 1997.

    Google Scholar 

  • C. J. R. Sheppard and P. Török. Effects of specimen refractive index on confocal imaging. J. Microscopy 185:366–374, 1997.

    Google Scholar 

  • K. B. Skouibine, N. A. Trayanova, and P. K. Moore. A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium. Math. Biosci. 166:85–100, 2000.

    MATH  Google Scholar 

  • B. H. Smaill and P. J. Hunter. Structure and function of the diastolic heart: Material properties of passive myocardium. In L. Glass, P. J. Hunter, and A. D. McCulloch, editors, Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function, pages 1–29. Springer-Verlag, New York, 1991.

    Google Scholar 

  • N. P. Smith and E. J. Crampin. Development of models of active ion transport for whole-cell modeling: cardiac sodium-potassium pump as a case study. Prog. Biophys. Molec. Biol. 85:387–405, 2004.

    Google Scholar 

  • N. P. Smith and P. J. Hunter. An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62:990–1018, 2003.

    MathSciNet  Google Scholar 

  • N. P. Smith, A. J. Pullan, and P. J. Hunter. Generation of an anatomically based geometric coronary model. Ann. Biomed. Eng. 28:14–25, 2000.

    Google Scholar 

  • N. P. Smith, A. J. Pullan, and P. J. Hunter. An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62:990–1018, 2002.

    MathSciNet  MATH  Google Scholar 

  • N. P. Smith, M. L. Buist, and A. J. Pullan. Altered T wave dynamics in a contracting cardiac model. J. Cardiovasc. Electrophys. 14:S203–209, 2003.

    Google Scholar 

  • N. P. Smith, D. P. Nickerson, E. J. Crampin, and P. J. Hunter. Multiscale computational modelling fo the heart. Acta Numerica 13:371–431, 2004.

    MathSciNet  Google Scholar 

  • D. A. Smith. A strain-dependent ratchet model of [phosphate]-and [ATP]-dependent muscle contraction. J. Muscle Res. Cell Motil. 19: 189–211, 1998.

    Google Scholar 

  • N. P. Smith. From sarcomere to cell: An efficient algorithm for linking mathematical models of muscle contraction. Bull. Math. Biol. 62:990–1018, 2003.

    Google Scholar 

  • J. A. E. Spaan, N. P. W. Breuls, and J. D. Laird. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetised dog. Circ. Res. 49:584–593, 1981.

    Google Scholar 

  • A. J. M. Spencer: Continuum Mechanics. Longman, London, 1980.

    MATH  Google Scholar 

  • C. M. Stein. Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9:1135–1151, 1981.

    MathSciNet  MATH  Google Scholar 

  • C. Stevens and P. J. Hunter. Sarcomere length changes in a 3D mathematical model of the pig ventricles. Prog. Biophys. Molec. Biol. 82:229–241, 2003.

    Google Scholar 

  • D. D. Streeter, Jr., H. M. Spotnitz, D. P. Patel, J. Ross, Jr., and E. H. Sonnenblick. Fibre orientation in the canine left ventricle during diastole and systole. Circ. Res. 24:339–347, 1969.

    Google Scholar 

  • D. D. Streeter, Jr., Gross morphology and fiber geometry of the heart. In R. M. Berne, N. Sperelakis, and S. R. Geigerl, editors, Handbook of Physiology, chapter 4, pages 61–112 Williams and Wilkins Company, 1979.

    Google Scholar 

  • Y. Sun, B. Rajwa, and J. P. Robinson. Adaptive image-processing technique and effective visualization of confocal microscopy images. Microsc. Res. Tech. 64:156–163, 2004.

    Google Scholar 

  • M. Tawhai and P. J. Hunter. Characterising respiratory airway gas mixing using a lumped parameter model of the pulmonary acinus. Respir. Physiol. 127:241–248, 2001a.

    Google Scholar 

  • M. Tawhai and P. J. Hunter. Multibreath washout analysis: modelling the influence of conducting airway asymmetry. Respir. Physiol. 127:249–258, 2001b.

    Google Scholar 

  • N. A. Trayanova. A bidomain model for ring stimulation of a cardiac strand. IEEE T. Biomed. Eng. 41:393–397, 1994.

    Google Scholar 

  • L. Tung. A Bidomain Model for Describing Ischemic Myocardial D-C Potentials. Ph.D. Dissertation, M.I.T., Boston, MA, 1978.

    Google Scholar 

  • F. J. Vetter and A. D. McCulloch. Three-dimensional stress and strain in passive rabbit left ventricle: a model study. Ann. Biomed. Eng. 28:781–792, 2000.

    Google Scholar 

  • T. D. Visser, F. C. A. Groen, and G. J. Brakenhoff. Absorption and scattering correction in fluorescence confocal microscopy. J. Microscopy 163:189–200, 1991.

    Google Scholar 

  • K. T. Weber, Y. Sun, S. C. Tyagi, and J. P. M. Cleutjens. Collagen network of the myocardium: function, structural remodelling and regulatory mechanisms. J. Mol. Cell Cardiol. 26:279–292, 1994.

    Google Scholar 

  • E. R. Weibel. The Pathway for Oxygen: Structure and Function in the Mammalian Respiratory System. Ph. D. Dissertation, Harvard, Cambridge, MA, 1984.

    Google Scholar 

  • W. J. Weninger, S. Meng, J. Streicher, and G. B. Müller. A new episcopic method for rapid 3-d reconstruction: applications in anatomy and embryology. 26:279–292, 1994.

    Google Scholar 

  • A. Y. K. Wong and P. M. Rautaharju. Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Am. Heart J. 75:649–662, 1968.

    Google Scholar 

  • A. A. Young, P. J. Hunter, and B. H. Smaill. Epicardial surface estimation from coronary cinéangiograms. Comput. Vis. Graph. Image Process. 47:111–127, 1989.

    Google Scholar 

  • A. A. Young, Z. A. Fayad, and L. Axel. Right ventricular midwall surface motion and deformation using magnetic resonance tagging. Am. J. Physiol. 271:H2677–H2688, 1996.

    Google Scholar 

  • A. A. Young, I. J. LeGrice, M. A. Young, and B. H. Smaill. Extended confocal microscopy of myocardial laminae and collagen network. J. Microscopy 192:139–150, 1998.

    Google Scholar 

  • G. I. Zahalak and S.-P. Ma. Muscle activation and contraction: Constitutive relations based directly on cross-bridge kinetics. J. Biomech. Eng. 112:52–62, 1990.

    Google Scholar 

  • G. I. Zahalak. A distribution-moment approximation for kinetic theories of muscular contraction. Math. Biosci. 55:89–114, 1981.

    MATH  Google Scholar 

  • O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method. Basic Formulation and Linear Problems, volume 1, 4th edition. McGraw-Hill, London, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 CISM, Udine

About this chapter

Cite this chapter

Schmid, H., Hunter, P.J. (2009). Multi-scale Modelling of the Heart. In: Holzapfel, G.A., Ogden, R.W. (eds) Biomechanical Modelling at the Molecular, Cellular and Tissue Levels. CISM International Centre for Mechanical Sciences, vol 508. Springer, Vienna. https://doi.org/10.1007/978-3-211-95875-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-95875-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-95873-5

  • Online ISBN: 978-3-211-95875-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics