Advertisement

The Substantia Nigra, the Basal Ganglia, Dopamine and Temporal Processing

  • Catherine R. G. Jones
  • Marjan JahanshahiEmail author
Chapter
Part of the Journal of Neural Transmission. Supplementa book series (NEURALTRANS, volume 73)

Abstract

It has been proposed that the basal ganglia are important to the temporal processing of milliseconds- and seconds-range intervals, both within the motor and perceptual domains. This review summarizes and discuses evidence from animal, pharmacological, clinical, and imaging research that supports this proposal, with particular reference to the role of the substantia nigra (SN).

Keywords

Temporal processing Basal ganglia Substantia nigra Parkinson’s disease Timing Time estimation Time reproduction Dopamine Fronto-striatal circuits 

Abbreviations

ADHD

Attention-deficit hyperactivity disorder

DBS

Deep brain stimulation

DA

Dopamine

PD

Parkinson’s disease

SET

Scalar expectancy theory

SBF

Striatal beat frequency model

SN

Substantia nigra

SNc

Substantia nigra pars compacta

SMA

Supplementary motor area

References

  1. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRefGoogle Scholar
  2. Andreasen NC, Pierson R (2008) The role of the cerebellum in schizophrenia. Biol Psychiatry 64:81–88PubMedCrossRefGoogle Scholar
  3. Aparicio P, Diedrichsen J, Ivry RB (2005) Effects of focal basal ganglia lesions on timing and force control. Brain Cogn 58:62–74PubMedCrossRefGoogle Scholar
  4. Apicella P, Scarnati E, Ljungberg T, Schultz W (1992) Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J Neurophysiol 68:945–960PubMedGoogle Scholar
  5. Artieda J, Pastor MA, Lacruz F, Obeso JA (1992) Temporal discrimination is abnormal in Parkinson’s disease. Brain 115(Pt 1): 199–210PubMedCrossRefGoogle Scholar
  6. Brown RG, Marsden CD (1991) Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain 114(Pt 1A):215–231PubMedGoogle Scholar
  7. Brown P, Williams D, Aziz T, Mazzone P, Oliviero A, Insola A, Tonali P, Di Lazzaro V (2002) Pallidal activity recorded is patients with implanted electrodes predictively correlates with eventual performance in a timing task. Neurosci Lett 330:188–192PubMedCrossRefGoogle Scholar
  8. Bueti D, Walsh V, Frith C, Rees G (2008) Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci 20:204–214PubMedCrossRefGoogle Scholar
  9. Buhusi CV, Meck WH (2002) Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci 116:291–297PubMedCrossRefGoogle Scholar
  10. Buhusi CV, Meck WH (2007) Effect of clozapine on interval timing and working memory for time in the peak-interval procedure with gaps. Behav Processes 74:159–167PubMedCrossRefGoogle Scholar
  11. Carroll CA, Boggs J, O’Donnell BF, Shekhar A, Hetrick WP (2008) Temporal processing dysfunction in schizophrenia. Brain Cogn 67:150–161PubMedCrossRefGoogle Scholar
  12. Casini L, Ivry RB (1999) Effects of divided attention on temporal processing in patients with lesions of the cerebellum or frontal lobe. Neuropsychology 13:10–21PubMedCrossRefGoogle Scholar
  13. Cheng RK, Ali YM, Meck WH (2007) Ketamine “unlocks” the reduced clock-speed effects of cocaine following extended training: evidence for dopamine–glutamate interactions in timing and time perception. Neurobiol Learn Mem 88:149–159PubMedCrossRefGoogle Scholar
  14. Cheng RK, Hakak OL, Meck WH (2007) Habit formation and the loss of control of an internal clock: inverse relationship between the level of baseline training and the clock-speed enhancing effects of methamphetamine. Psychopharmacology (Berl) 193:351–362CrossRefGoogle Scholar
  15. Coull JT, Nazarian B, Vidal F (2008) Timing, storage, and comparison of stimulus duration engage discrete anatomical components of a perceptual timing network. J Cogn Neurosci 12:2185–2197CrossRefGoogle Scholar
  16. Davalos DB, Kisley MA, Ross RG (2003) Effects of interval duration on temporal processing in schizophrenia. Brain Cogn 52:295–301PubMedCrossRefGoogle Scholar
  17. Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486PubMedGoogle Scholar
  18. Drew MR, Fairhurst S, Malapani C, Horvitz JC, Balsam PD (2003) Effects of dopamine antagonists on the timing of two intervals. Pharmacol Biochem Behav 75:9–15PubMedCrossRefGoogle Scholar
  19. Elvevag B, McCormack T, GIlbert A, Brown GD, Weinberger DR, Goldberg TE (2003) Duration judgements in patients with schizophrenia. Psychol Med 33:1249–1261PubMedCrossRefGoogle Scholar
  20. Ferrandez AM, Hugueville L, Lehericy S, Poline J-B, Marsault C, Pouthas V (2003) Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. Neuroimage 19:1532–1544PubMedCrossRefGoogle Scholar
  21. Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:279–325CrossRefGoogle Scholar
  22. Gibbon J, Church RM (1984) Animal Cognition. In: Roitblat HL, Bever TG, Terrace HS (eds) Sources of variance in an information processing theory of timing. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 465–488Google Scholar
  23. Gibbon J, Church RM, Meck WH (1984) Scalar timing in memory. Ann NY Acad Sci 423:52–77PubMedCrossRefGoogle Scholar
  24. Harrington DL, Haaland KY, Hermanowicz N (1998) Temporal processing in the basal ganglia. Neuropsychology 12:3–12PubMedCrossRefGoogle Scholar
  25. Harrington DL, Boyd LA, Mayer AR, Sheltraw DM, Lee RR, Huang M, Rao SM (2004a) Neural representation of interval encoding and decision making. Brain Res Cogn Brain Res 21: 193–205PubMedCrossRefGoogle Scholar
  26. Harrington DL, Lee RR, Boyd LA, Rapscak SZ, Knight RT (2004b) Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain 127:561–574PubMedCrossRefGoogle Scholar
  27. Hinton SC, Rao SM (2004) One-thousand one... one-thousand two...": chronometric counting violates the scalar property in interval timing. Psychon Bull Rev 11:24–30PubMedCrossRefGoogle Scholar
  28. Hinton SC, Harrington DL, Binder JR, Durgerian S, Rao SM (2004) Neural systems supporting timing and chronometric counting: an FMRI study. Cogn Brain Res 21:183–192CrossRefGoogle Scholar
  29. Hinton SC, Paulsen JS, Hoffmann RG, Reynolds NC, Zimbelman JL, Rao SM (2007) Motor timing variability increases in preclinical Huntington’s disease patients as estimated onset of motor symptoms approaches. J Int Neuropsychol Soc 13:539–543PubMedCrossRefGoogle Scholar
  30. Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1:304–309PubMedCrossRefGoogle Scholar
  31. Ivry RB (1996) The representation of temporal information in perception and motor control. Curr Opin Neurobiol 6:851–857PubMedCrossRefGoogle Scholar
  32. Ivry RB, Keele SW (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:136–152CrossRefGoogle Scholar
  33. Ivry RB, Keele SW, Diener HC (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res 73:167–180PubMedCrossRefGoogle Scholar
  34. Jahanshahi M, Jones CR, Dirnberger G, Frith CD (2006) The substantia nigra pars compacta and temporal processing. J Neurosci 26: 12266–12273PubMedCrossRefGoogle Scholar
  35. Jancke L, Loose R, Lutz K, Specht K, Shah NJ (2000) Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cogn Brain Res 10:51–66CrossRefGoogle Scholar
  36. Jantzen KJ, Steinberg FL, Kelso JA (2004) Brain networks underlying human timing behavior are influenced by prior context. Proc Natl Acad Sci USA 101:6815–6820PubMedCrossRefGoogle Scholar
  37. Jones CR, Malone TJ, Dirnberger G, Edwards M, Jahanshahi M (2008) Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cogn 68:30–41PubMedCrossRefGoogle Scholar
  38. Jueptner M, Rijntjes M, Weiller C, Faiss JH, Timmann D, Mueller SP, Diener HC (1995) Localization of a cerebellar timing process using PET. Neurology 45:1540–1545PubMedGoogle Scholar
  39. Keele SW, Pokorny RA, Corcos DM, Ivry R (1985) Do perception and motor production share common timing mechanisms: a correctional analysis. Acta Psychol Amst 60:173–191PubMedCrossRefGoogle Scholar
  40. Kerns KA, McInerney RJ, Wilde NJ (2001) Time reproduction, working memory, and behavioral inhibition in children with ADHD. Child Neuropsychol 7:21–31PubMedGoogle Scholar
  41. Killeen P, Fetterman JG (1988) A behavioral theory of timing. Psychol Rev 95:274–295PubMedCrossRefGoogle Scholar
  42. Kobayashi S, Schultz W (2008) Influence of reward delays on responses of dopamine neurons. J Neurosci 28:7837–7846PubMedCrossRefGoogle Scholar
  43. Koch G, Brusa L, Caltagirone C, Oliveri M, Peppe A, Tiraboschi P, Stanzione P (2004) Subthalamic deep brain stimulation improves time perception in Parkinson’s disease. Neuroreport 15:1071–1073PubMedCrossRefGoogle Scholar
  44. Koch G, Brusa L, Oliveri M, Stanzione P, Caltagirone C (2005) Memory for time intervals is impaired in left hemi-Parkinson patients. Neuropsychologia 43:1163–1167PubMedCrossRefGoogle Scholar
  45. Koch G, Costa A, Brusa L, Peppe A, Gatto I, Torriero S, Gerfo EL, Salerno S, Oliveri M, Carlesimo GA, Caltagirone C (2008) Impaired reproduction of second but not millisecond time intervals in Parkinson’s disease. Neuropsychologia 46:1305–1313PubMedCrossRefGoogle Scholar
  46. Lange KW, Tucha O, Steup A, Gsell W, Naumann M (1995) Subjective time estimation in Parkinson’s disease. J Neural Transm Suppl 46:433–438PubMedGoogle Scholar
  47. Lewis PA, Miall RC (2002) Brain activity during non-automatic motor production of discrete multi-second intervals. Neuroreport 13:1731–1735PubMedCrossRefGoogle Scholar
  48. Lewis P, Miall RC (2003a) Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia 41:1583–1592PubMedCrossRefGoogle Scholar
  49. Lewis PA, Miall RC (2003b) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13:250–255PubMedCrossRefGoogle Scholar
  50. Lewis P, Wing AM, Pope PA, Praamstra P, Miall RC (2004) Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia 42: 1301–1312PubMedCrossRefGoogle Scholar
  51. Lewis SJ, Foltynie T, Blackwell AD, Robbins TW, Owen AM, Barker RA (2005) Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry 76:343–348PubMedCrossRefGoogle Scholar
  52. Livesey AC, Wall MB, Smith AT (2007) Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia 45:321–331PubMedCrossRefGoogle Scholar
  53. Macar F, Lejeune H, Bonnet M, Ferrara A, Pouthas V, Vidal F, Maquet P (2002) Activation of the supplementary motor area and of attentional networks during temporal processing. Exp Brain Res 142:475–485PubMedCrossRefGoogle Scholar
  54. Macar F, Anton JL, Bonnet M, Vidal F (2004) Timing functions of the supplementary motor area: an event-related fMRI study. Brain Res Cogn Brain Res 21:206–215PubMedCrossRefGoogle Scholar
  55. Macar F, Coull J, Vidal F (2006) The supplementary motor area in motor and perceptual time processing: fMRI studies. Cogn Process 7:89–94PubMedCrossRefGoogle Scholar
  56. Macdonald CJ, Meck WH (2005) Differential effects of clozapine and haloperidol on interval timing in the supraseconds range. Psychopharmacology (Berl) 182:232–244CrossRefGoogle Scholar
  57. Malapani C, Rakitin B, Levy R, Meck WH, Deweer B, Dubois B, Gibbon J (1998) Coupled temporal memories in Parkinson’s disease: a dopamine-related dysfunction. J Cogn Neurosci 10:316–331PubMedCrossRefGoogle Scholar
  58. Malapani C, Deweer B, Gibbon J (2002) Separating storage from retrieval dysfunction of temporal memory in Parkinson’s disease. J Cogn Neucrosci 14:311–322CrossRefGoogle Scholar
  59. Maquet P, Lejeune H, Pouthas V, Bonnet M, Casini L, Macar F, Timsit BM, Vidal F, Ferrara A, Degueldre C, Quaglia L, Delfiore G, Luxen A, Woods R, Mazziotta JC, Comar D (1996) Brain activation induced by estimation of duration: a PET study. Neuroimage 3:119–126PubMedCrossRefGoogle Scholar
  60. Maricq AV, Church RM (1983) The differential effects of haloperidol and methamphetamine on time estimation in the rat. Psychapharmacology Berl 79:10–15CrossRefGoogle Scholar
  61. Matell MS, Meck WH (2000) Neuropsychological mechanisms of interval timing behavior. Bioessays 22:94–103PubMedCrossRefGoogle Scholar
  62. Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res Cogn Brain Res 21:139–170PubMedCrossRefGoogle Scholar
  63. Matell MS, Meck WH, Nicolelis MA (2003) Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav Neurosci 117:760–773PubMedCrossRefGoogle Scholar
  64. Matell MS, King GR, Meck WH (2004) Differential modulation of clock speed by the administration of intermittent versus continuous cocaine. Behav Neurosci 118:150–156PubMedCrossRefGoogle Scholar
  65. Matell MS, Bateson M, Meck WH (2006) Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions. Psychopharmacology (Berl) 188:201–212CrossRefGoogle Scholar
  66. Max JE, Fox PT, Lancaster JL, Kochunov P, mathews K, Manes FF, Robertson BA, Arndt S, Robin DA, Lansing AE (2002) Putamen lesions and the development of attention-deficit/hyperactivity symptomatology. J Am Acad Child Adolesc Psychiatry 41:563–571PubMedCrossRefGoogle Scholar
  67. McInerney RJ, Kerns KA (2003) Time reproduction in children with ADHD: motivation matters. Neuropsychol Dev Cogn Sect C Child Neuropsychol 9:91–108CrossRefGoogle Scholar
  68. Meck WH (1986) Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol Biochem Behav 25:1185–1189PubMedCrossRefGoogle Scholar
  69. Meck WH (1996) Neuropharmacology of timing and time perception. Brain Res Cogn Brain Res 3:227–242PubMedCrossRefGoogle Scholar
  70. Meck WH (2006) Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res 1109:93–107PubMedCrossRefGoogle Scholar
  71. Meck WH, Church RM (1987) Cholinergic modulation of the content of temporal memory. Behav Neurosci 101:457–464PubMedCrossRefGoogle Scholar
  72. Merchant H, Luciana M, Hooper C, Majestic S, Tuite P (2008) Interval timing and Parkinson’s disease: heterogeneity in temporal performance. Exp Brain Res 184:233–248PubMedCrossRefGoogle Scholar
  73. Miall RC (1989) The storage of time intervals using oscillating neurons. Neural Comput 1:359–371CrossRefGoogle Scholar
  74. Miall RC (1992) Time, action and cognition. In: Macar F, Pouthas V, Friedman WJ (eds) Oscillators, predictions and time. Kluwer, Dordrecht, pp 215–227Google Scholar
  75. Miall C (1996) Time, internal clocks and movement. In: Pastor MA, Artieda J (eds) Models of neural timing. Elsevier, Amsterdam, pp 69–94Google Scholar
  76. Muller JL, Deuticke C, Putzhammer A, Roder CH, Hajak G, Winkler J (2003) Schizophrenia and Parkinson’s disease lead to equal motor-related changes in cortical and subcortical brain activation: an fMRI fingertapping study. Psychiatry Clin Neurosci 57:562–568PubMedGoogle Scholar
  77. Mullins C, Bellgrove MA, Gill M, Robertson IH (2005) Variability in time reproduction: difference in ADHD combined and inattentive subtypes. J Am Acad Child Adolesc Psychiatry 44:169–176PubMedCrossRefGoogle Scholar
  78. Nenadic I, Gaser C, Volz HP, Rammsayer T, Hager F, Sauer H (2003) Processing of temporal information and the basal ganglia: new evidence from fMRI. Exp Brain Res 148:238–246PubMedGoogle Scholar
  79. O’Boyle DJ, Freeman JS, Cody FWJ (1996) The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain 119:51–70PubMedCrossRefGoogle Scholar
  80. Pastor MA, Jahanshahi M, Artieda J, Obeso JA (1992a) Performance of repetitive wrist movements in Parkinson’s disease. Brain 115:875–891PubMedCrossRefGoogle Scholar
  81. Pastor MA, Artieda J, Jahanshahi M, Obeso JA (1992b) Time estimation and reproduction is abnormal in Parkinson’s disease. Brain 115:211–225PubMedCrossRefGoogle Scholar
  82. Paulsen JS, Zimbelman JL, Hinton SC, Langbehn DR, Leveroni CL, Benjamin ML, Reynolds NC, Rao SM (2004) fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington’s Disease. AJNR Am J Neuroradiol 25:1715–1721PubMedGoogle Scholar
  83. Penney TB, Meck WH, Roberts SA, Gibbon J, Erlenmeyer-Kimling L (2005) Interval-timing deficits in individuals at high risk for schizophrenia. Brain Cogn 58:109–118PubMedCrossRefGoogle Scholar
  84. Perbal S, Deweer B, Pillon B, Vidailhet M, Dubois B, Pouthas V (2005) Effects of internal clock and memory disorders on duration reproductions and duration productions in patients with Parkinson’s disease. Brain Cogn 58:35–48PubMedCrossRefGoogle Scholar
  85. Pouthas V, George N, Poline JB, Pfeuty M, Vandemoorteele PF, Hugueville L, Ferrandez AM, Lehericy S, Lebihan D, Renault B (2005) Neural network involved in time perception: an fMRI study comparing long and short interval estimation. Hum Brain Mapp 25:433–441PubMedCrossRefGoogle Scholar
  86. Radonovich KJ, Mostofsky SH (2004) Duration judgments in children with ADHD suggest deficient utilization of temporal information rather than general impairment in timing. Child Neuropsychol 10:162–172PubMedCrossRefGoogle Scholar
  87. Rakitin BC, Scarmeas N, Li T, Malapani C, Stern Y (2006) Single-dose levodopa administration and aging independently disrupt time production. J Cogn Neurosci 18:376–387PubMedCrossRefGoogle Scholar
  88. Rammsayer T (1990) Temporal discrimination in schizophrenic and affective disorders: evidence for a dopamine-dependent internal clock. Int J Neurosci 53:111–120PubMedCrossRefGoogle Scholar
  89. Rammsayer T (1993) On dopaminergic modulation of temporal information processing. Biol Psychol 36:209–222PubMedCrossRefGoogle Scholar
  90. Rammsayer TH (1997) Are there dissociable roles of the mesostriatal and mesolimbocortical dopamine systems on temporal information processing in humans? Neuropsychobiology 35:36–45PubMedCrossRefGoogle Scholar
  91. Rammsayer TH (1999) Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol B 52:273–286PubMedCrossRefGoogle Scholar
  92. Rammsayer TH, Hennig J, Haag A, Lange N (2001) Effects of noradrenergic activity on temporal information processing in humans. Q J Exp Psychol B 54:247–258PubMedCrossRefGoogle Scholar
  93. Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR (1997) Distributed neural systems underlying the timing of movements. J Neurosci 17:5528–5535PubMedGoogle Scholar
  94. Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323PubMedCrossRefGoogle Scholar
  95. Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H (2003) Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: a fMRI study. Neuroimage 18:731–739PubMedCrossRefGoogle Scholar
  96. Riesen JM, Schnider, A (2001) Time estimation in Parkinson’s disease: normal long duration estimation despite impaired short duration discrimination. J Neurol 248:27–35CrossRefGoogle Scholar
  97. Rubia K, Noorloos J, Smith A, Gunning B, Sergeant J (2003) Motor timing deficits in community and clinical boys with hyperactive behavior: the effect of methylphenidate on motor timing. J Abnorm Child Psychol 31:301–313PubMedCrossRefGoogle Scholar
  98. Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610PubMedGoogle Scholar
  99. Schrag A, Quinn NP, Ben-Shlomo Y (2006) Heterogeneity of parkinson’s disease. J Neurol Neurosurg Psychiatry 77:275–276Google Scholar
  100. Semrud-Clikeman M, Steingard RJ, Filipek P, Biederman J, Bekken K, Renshaw PF (2000) Using MRI to examine brain-behavior relationships in males with attention deficit disorder with hyperactivity. J Am Acad Child Adolesc Psychiatry 39:477–484PubMedCrossRefGoogle Scholar
  101. Smith A, Taylor E, Rogers JW, Newman S, Rubia K (2002) Evidence for a pure time perception deficit in children with ADHD. J Child Psychol Psychiatry 43:529–542PubMedCrossRefGoogle Scholar
  102. Smith JG, Harper DN, Gittings D, Abernethy D (2007) The effect of Parkinson’s disease on time estimation as a function of stimulus duration range and modality. Brain Cogn 64:130–143PubMedCrossRefGoogle Scholar
  103. Spencer RM, Ivry RB (2005) Comparison of patients with Parkinson’s disease or cerebellar lesions in the production of periodic movements involving event-based or emergent timing. Brain Cogn 58:84–93PubMedCrossRefGoogle Scholar
  104. Staddon JE, Higa JJ (1999) Time and memory: towards a pacemaker-free theory of interval timing. J Exp Anal Behav 71:215–251PubMedCrossRefGoogle Scholar
  105. Teicher MH, Anderson CM, Polcari A, Glod CA, Maas LC, Renshaw PF (2000) Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nat Med 6:470–473PubMedCrossRefGoogle Scholar
  106. Toplak ME, Dockstader C, Tannock R (2006) Temporal information processing in ADHD: findings to date and new methods. J Neurosci Methods 151:15–29PubMedCrossRefGoogle Scholar
  107. Tregellas JR, Davalos DB, Rojas DC (2006) Effect of task difficulty on the functional anatomy of temporal processing. Neuroimage 32:307–315PubMedCrossRefGoogle Scholar
  108. Tripp G, Wickens JR (2008) Research review: dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in ADHD. J Child Psychol Psychiatry 49:691–704PubMedCrossRefGoogle Scholar
  109. Volz HP, Nenadic I, Gaser C, Rammsayer T, Hager F, Sauer H (2001) Time estimation in schizophrenia: an fMRI study at adjusted levels of difficulty. Neuroreport 12:313–316PubMedCrossRefGoogle Scholar
  110. Wahl OF, Sieg D (1980) Time estimation among schizophrenics. Percept Mot Skills 50:535–541PubMedGoogle Scholar
  111. Wearden JH (1999) “Beyond the fields we know...”: exploring and developing scalar timing theory. Behav Processes 45:3–21CrossRefGoogle Scholar
  112. Wing AM, Kristofferson AB (1973) Response delays and the timing of discrete motor responses. Percept Psychophys 14:5–12CrossRefGoogle Scholar
  113. Wing AM, Kristofferson AB (1973) The timing of interresponse intervals. Perception and Psychophysics 13:455–460Google Scholar
  114. Woodruff-Pak DS, Papka M, Ivry RB (1996) Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology 10:443–458CrossRefGoogle Scholar
  115. Yang B, Chan RC, Zou X, Jing J, Mai J, Li J (2007) Time perception deficit in children with ADHD. Brain Res 1170:90–96PubMedCrossRefGoogle Scholar
  116. Yeo CH, Hardiman MJ, Glickstein M (1985) Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of the cerebellar cortex. Exp Brain Res 60:99–113PubMedCrossRefGoogle Scholar
  117. Yeo CH, Hardiman MJ, Glickstein M (1985) Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp Brain Res 60:87–98PubMedCrossRefGoogle Scholar
  118. Yeo CH, Hardiman MJ, Glickstein M (1985) Classical conditioning of the nictitating membrane response of the rabbit III. Connections of cerebellar lobule HVI. Exp Brain Res 60:114–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien Printed in Germany 2009

Authors and Affiliations

  1. 1.Sobell Department of Motor Neuroscience and Movement DisordersUCL Insitute of NeurologyLondonUK
  2. 2.Department of Psychology and Human Development, Institute of EducationUniversity of LondonLondonUK

Personalised recommendations