Skip to main content

Non‐motor Function of the Midbrain Dopaminergic Neurons

  • Chapter
  • First Online:
Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra

Abstract

The roles of the nigrostriatal pathway are far beyond the simple control of motor functions. The tonic release of dopamine in the dorsal and ventral striatum controls the choice of proper actions toward a given environmental situation. In the striatum, a specific action is triggered by a specific stimulus associated with it. When the subject faces a novel and salient stimulus, the phasic release of dopamine allows synaptic plasticity in the cortico-striatal synapses. Neurons of different regions of cortical areas make synapses that converge to the same medium spine neurons of the striatum. The convergent associations form functional units encoding body parts, objects, locations, and symbolic representations of the subject’s world. Such units emerge in the striatum in a repetitive manner, like a mosaic of broken mirrors. The phasic release of dopamine allows the association of units to encode an action of the subject directed to an object or location with the outcome of this action. Reinforced stimulus-action-outcome associations will affect future decision making when the same stimulus (object, location, idea) is presented to the subject in the future. In the absence of a minimal amount of striatal dopamine, no action is initiated as seen in Parkinson’s disease subjects. The abnormal and improper association of these units leads to the initiation of unpurposeful and sometimes repetitive actions, as those observed in dyskinetic patients. The association of an excessive reinforcement of some actions, like drug consumption, leads to drug addiction. Improper associations of ideas and unpleasant outcomes may be related to traumatic and depressive symptoms common in many diseases, including Parkinson’s disease. The same can be said about the learning and memory impairments observed in demented and nondemented Parkinson’s disease patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CREB:

Cyclic-AMPc response-element-binding protein

CRF:

Corticotrophin-releasing factor

DSM IV:

Diagnostic and statistical manual of mental disorders

GABA:

Gamma amino butyric acid

GPi:

Globus pallidus

HD:

Huntington’s disease

LTP:

Long-term potentiation

NAc:

Nucleus accumbens

PD:

Parkinson’s disease

PET:

Positron emission tomography

SNc:

Substantia nigra pars compacta

SNr:

Substantia nigra pars reticulata

TH:

Tyrosine hydroxylase

THC:

Tetrahydrocannabinol

VTA:

Ventral tegmental area

References

  • Aarsland D, Tandberg E, Larsen JP, Cummings JL (1996) Frequency of dementia in Parkinson disease. Arch Neurol 53:538–542

    Google Scholar 

  • Ahmed SH, Kenny PJ, Koob GF, Markou A (2002) Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci 5:625–626

    CAS  PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Anthony JC, Warner LA, Kessler RC (1994) Comparative epidemiology of dependence on tobacco, ethanol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey. Exp Clin Psychopharmacol 2:244–268

    Article  Google Scholar 

  • Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci 31:8161–8165

    Article  CAS  Google Scholar 

  • Barone P, Scarzella L, Marconi R, Antonini A, Morgante L, Bracco F, Zappia M, Musch B; Depression/Parkinson Italian Study Group (2006) Pramipexole versus sertraline in the treatment of depression in PD: a national multicenter parallel-group randomized study. J Neurol 5:601–607

    Google Scholar 

  • Bayer H, Glimcher P (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47:129–141

    Article  CAS  PubMed  Google Scholar 

  • Bejjani BP, Damier P, Arnulf I, Thivard L, Bonnet AM, Dormont D, Cornu P, Pidoux B, Samson Y, Agid Y (1999) Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 19:1476–1480

    Article  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl) 191: 391–431

    Article  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369

    Article  CAS  PubMed  Google Scholar 

  • Blomstedt P, Hariz MI, Lees A, Silberstein P, Limousin P, Yelnik J, Agid Y (2008) Acute severe depression induced by intraoperative stimulation of the substantia nigra: a case report. Parkinsonism Relat Disord 3:253– 6

    Article  Google Scholar 

  • Bondi MW, Kaszniak AW (1991) Implicit and explicit memory in Alzheimer’s disease and Parkinson’s disease. J Clin Exp Neuropsychol 13:339–358

    Article  CAS  PubMed  Google Scholar 

  • Bosboom JL, Stoffers D, Wolters ECh (2004) Cognitive dysfunction and dementia in Parkinson’s disease. J Neural Transm 111:1303–1315

    Article  CAS  PubMed  Google Scholar 

  • Bowman EM, Aigner TG, Richmond BJ (1996) Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. J Neurophysiol 75:1061–1073

    CAS  PubMed  Google Scholar 

  • Bradley V, Welch JL, Dick JD (1989) Visuospatial working memory in Parkinson’s disease. J Neurol Neurosurg Psychiatry 52:1228–1235

    Article  CAS  PubMed  Google Scholar 

  • Brown RG, Marsden CD (1984) How common is dementia in Parkinson’s disease? Lancet 2:1262–1265

    Article  CAS  PubMed  Google Scholar 

  • Burges PW, Alderman N (2004) Executive dysfunction. In: Goldstein L, McNeil J (eds) org. Clinical neuropsychology: a practical guide to assessment and management for clinicians. Wiley, England, pp 185–270

    Google Scholar 

  • Calabresi P, Picconi B, Tozzi A, Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30:211–219

    Article  CAS  PubMed  Google Scholar 

  • Calzavara R, Mailly P, Haber SN (2007) Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci 26:2005–2024

    Article  PubMed  Google Scholar 

  • Cantello R, Aguggia M, Gilli M, Delsedime M, Chiardò Cutin I, Riccio A, Mutani R (1989) Major depression in PD and the mood response to intravenous methylphenidate: possible role of the “hedonic” dopamine synapse. J Neurol Neurosurg Psychiatry 6:724–731

    Article  Google Scholar 

  • Capriles N, Rodaros D, Sorge RE, Stewart J (2003) A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacol 168:66–74

    Article  CAS  Google Scholar 

  • Chang C, Crottaz-Herbette S, Menon V (2007) Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage 34:1253–1269

    Article  PubMed  Google Scholar 

  • Cheatwood JL, Corwin JV, Reep RL (2005) Overlap and interdigitation of cortical and thalamic afferents to dorsocentral striatum in the rat. Brain Res 1036:90–100

    Article  CAS  PubMed  Google Scholar 

  • Chen JP, Paredes W, Lowinson JH, Gardner EL (1991) Strain-specific facilitation of dopamine efflux by delta-9-tetrahydrocannabinol in the nucleus accumbens of rat: an in vivo microdialysis study. Neurosci Lett 129:136–180

    Article  CAS  PubMed  Google Scholar 

  • Cornish J, Kalivas P (2000) Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 20:RC89

    CAS  PubMed  Google Scholar 

  • Corrigal WA, Franklin KBJ, Coen KM, Clarke PBS (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacol 107:285–289

    Article  Google Scholar 

  • Da Cunha C, Wietzikoski S, Wietzikoski EC, Miyoshi E, Ferro MM, Anselmo-Franci JA, Canteras NS (2003) Evidence for the substantia nigra pars compacta as an essential component of a memory system independent of the hippocampal memory system. Neurobiol Learn Mem 3:236–242

    Article  Google Scholar 

  • Da Cunha C, Wietzikoski EC, Dombrowski PA, Bortolanza M, Santos LM, Boschen SL, Miyoshi E (2009) Learning processing in the basal ganglia: A mosaic of broken mirrors. Behav Brain Res 199:157–170

    Article  PubMed  Google Scholar 

  • Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  Google Scholar 

  • Di Ciano P, Cardinal RN, Cowell RA, Little SJ, Everitt BJ (2001) Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of Pavlovian approach behavior. J Neurosci 21:9471–9477

    PubMed  Google Scholar 

  • Di Filippo M, Picconi B, Barone I, Ghiglieri V, Bagetta V, Sgobio C, Tozzi A, Calabresi P (2009) Striatal synaptic plasticity: underlying mechanisms and implications for reward-related learning. Behav Brain Res 199:108–118

    Article  PubMed  Google Scholar 

  • Diana M, Pistis M, Carboni S, Gessa GL, Rossetti ZL (1993) Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: electrophysiological and biochemical evidence. Proc Natl Acad Sci USA 90:7966–7969

    Article  CAS  PubMed  Google Scholar 

  • Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2–8

    Article  CAS  PubMed  Google Scholar 

  • Dujardin K, Laurent B (2003) Dysfunction of the human memory systems: role of the dopaminergic transmission. Curr Opin Neurol 16:S11–S16

    Article  CAS  PubMed  Google Scholar 

  • Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327–337

    Article  CAS  PubMed  Google Scholar 

  • Faglioni P, Scarpa M, Botti C, Ferrari V (1995) Parkinson’s disease affects automatic and spares intentional verbal learning. A stochastic approach to explicit learning processes. Cortex 31:597–617

    CAS  PubMed  Google Scholar 

  • Faglioni P, Bottib C, Scarpaa M, Ferraria V, Saettia MC (1997) Learning and forgetting processes in Parkinson’s disease: A model-based approach to disentangling storage, retention and retrieval contributions. Neuropsychol 35:767–779

    Article  CAS  Google Scholar 

  • Fahn S, Przedborski S (2000) Parkinsonism. In: Rowland LP (ed) Merritt’s neurology. Williams and Wilkins, Lippincott, NY, pp 679–693

    Google Scholar 

  • Flaherty AW, Graybiel AM (1991) Corticostriatal transformations in the primate somatosensory system - projections from physiologically mapped body-part representations. J Neurophysiol 66:1249–63

    CAS  PubMed  Google Scholar 

  • Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51–72

    Article  PubMed  Google Scholar 

  • Frisina PG, Haroutunian V, Libow LS (2009) The neuropathological basis for depression in PD Parkinsonism. Relat Disord 15:144–148

    Article  Google Scholar 

  • Girotti F, Carella F, Grassi MP, Soliveri P, Marano R, Caraceni T (1986) Motor and cognitive performances of parkinsonian patients in the on and off phases of the disease. J Neurol Neurosurg Psychiatry 49:657–660

    Article  CAS  PubMed  Google Scholar 

  • Goetz CG, Tanner CM, Klawans HL (1984) Bupropion in PD. Neurology 8:1092–1094

    Google Scholar 

  • Goldman WP, Baty JD, Buckles VD, Sahrmann S, Morris JC (1998) Cognitive and motor functioning in Parkinson disease — subjects with and without questionable dementia. Arch Neurol 55:674–680

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neurophramacology 53:583–587

    Article  CAS  Google Scholar 

  • Grahn JA, Parkinson JA, Owen AM (2009) The role of the basal ganglia in learning and memory: neuropsychological studies. Behav Brain Res 199:53–60

    Article  PubMed  Google Scholar 

  • Graziano MSA, Gross CG (1993) A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields. Exp Brain Res 97:96–109

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Helligren J, Menard A, Saitoh K, Wikstrom MA (2005) Mechanisms for selection of basic motor programs – roles for the striatum and pallidum. Trends Neurosci 28:364–70

    Article  CAS  PubMed  Google Scholar 

  • Grossman M, Cooke A, DeVita C, Lee C, Alsop D, Detre J (2003) Grammatical and resource components of sentence processing in Parkinson’s disease: an fMRI study. Neurology 60:775–81

    Article  CAS  PubMed  Google Scholar 

  • Guitart X, Thompson MA, Mirante CK, Greenberg ME, Nestler EJ (1992) Regulation of CREB phosphorylation by acute and chronic morphine in the rat locus coeruleus. J Neurochem 5:1168–1171

    Article  Google Scholar 

  • Hikosaka O (2007) GABAergic output of the basal ganglia. Prog Brain Res 160:209–226

    Article  CAS  PubMed  Google Scholar 

  • Hooss CA, Margolis RL (2002) Huntington disease. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Williams and Wilkins, Lippincott, NY, pp 1817–1830

    Google Scholar 

  • Hyman SE (1996) Addiction to cocaine and amphetamine. Neuron 16:901–904

    Article  CAS  PubMed  Google Scholar 

  • Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psych 162:1414–1422

    Article  Google Scholar 

  • Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2: 695–703

    Article  CAS  PubMed  Google Scholar 

  • Kauer JA (2004) Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol 66:447–475

    Article  CAS  PubMed  Google Scholar 

  • Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273:1399–1402

    Article  CAS  PubMed  Google Scholar 

  • Koenig O, Thomas-Anterion C, Laurent B (1999) Procedural learning in Parkinson’s disease: intact and impaired cognitive components. Neuropsychologia 37:1103–1109

    Article  CAS  PubMed  Google Scholar 

  • Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ, Grasby PM (1998) Evidence for striatal dopamine release during a video game. Nature 393:266–268

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (2003) Alcoholism: allostasis and beyond. Alcohol Clin Exp Res 27:232–243

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Nestler EJ (1997) Neurobiology of addiction. J Neuropsychiat Clin Neurosci 9:482–497

    CAS  Google Scholar 

  • Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacol 24:97–129

    Article  CAS  Google Scholar 

  • Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the « dark side » of drug addiction. Nat Neurosci 8:1442–1444

    Article  CAS  PubMed  Google Scholar 

  • Kreek MJ (1997) Opiate and cocaine addictions: challenge for pharmacotherapies. Pharmacol Biochem Behav 57:551–569

    Article  CAS  PubMed  Google Scholar 

  • Lau B, Glimcher PW (2007) Action and outcome encoding in the primate caudate nucleus. J Neurosci 52:14502–14514

    Article  CAS  Google Scholar 

  • Lawrence AJ, Beart PM, Kalivas PW (2008) Neuropharmacology of addiction-setting the scene. Br J Pharmacol 154:259–260

    Article  CAS  PubMed  Google Scholar 

  • Le Moal M, Koob GF (2007) Drug addiction: pathways to the disease and pathophysiological perspectives. Eur Neuropsychopharmacol 17:377–393

    Article  PubMed  CAS  Google Scholar 

  • Leshner AI (1997) Addiction is a brain disease, and it matters. Science 5335:45–47

    Article  Google Scholar 

  • Lu L, Grimm JW, Shaham Y, Hope BT (2003) Molecular adaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self-administration in rats. J Neurochem 85:1604–1613

    Article  CAS  PubMed  Google Scholar 

  • Maricle RA, Valentine RJ, Carter J, Nutt JG (1998) Mood response to levodopa infusion in early PD. Neurology 6:1890–1892

    Google Scholar 

  • Marie RM, Barre L, Dupuy B, Viader F, Defer G, Baron JC (1999) Relationships between striatal dopamine denervation and frontal executive tests in Parkinson’s disease. Neurosci Lett 260:77–80

    Article  CAS  PubMed  Google Scholar 

  • Marie RM, Defer G (2003) Working memory and dopamine: clinical and experimental clues. Curr Opin Neurol 16:S29–S35

    Article  CAS  PubMed  Google Scholar 

  • Marsden CA (2006) Dopamine: the regarding yers. Br J Pharmacol 147:S135–S144

    Article  CAS  Google Scholar 

  • Mayeux R (1990) The “serotonin hypothesis” for depression in PD. Adv Neurol 53:163–166

    CAS  PubMed  Google Scholar 

  • McFarland K, Kalivas PW (2001) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 21:8655–8663

    Google Scholar 

  • McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23:3531–3537

    Google Scholar 

  • McFarland K, Davidge SB, Lapish CC, Kalivas PW (2004) Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24:1551–1560

    Article  CAS  Google Scholar 

  • McKeith I, Burn D (2000) Spectrum of Parkinson’s disease, Parkinson’s dementia, and Lewy body dementia. Neurol Clin 18:865–83

    Article  CAS  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  CAS  PubMed  Google Scholar 

  • Mizumori SJY, Yeshenko O, Gill KM, Davis DM (2004) Parallel processing across neural systems: Implications for a multiple memory system hypothesis. Neurobiol Learn Mem 82:278–298

    Article  PubMed  Google Scholar 

  • Mizumori SJ, Puryear CB, Martig AK (2009) Basal ganglia contributions to adaptive navigation. Behav Brain Res 199:32–42

    Article  PubMed  Google Scholar 

  • Montoya A, Price BH, Menear M, Lepage M (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci 31:21–29

    PubMed  Google Scholar 

  • Moreaud O, Fournet N, Roulin JL, Naegele B, Pellat J (1997) The phonological loop in medicated patients with Parkinson’s disease: presence of phonological similarity and word length effects. J Neurol Neurosurg Psychiatry 62:609–611

    Article  CAS  PubMed  Google Scholar 

  • Negus SS, Henriksen SJ, Mattox A, Pasternak GW, Portoghese PS, Takemori AE, Weinger MB, Koob GF (1993) Effect of antagonists selective for mu, delta and k opioid receptors on the reinforcing effects of heroin in rats. J Pharmacol Exp Ther 265:1245–1252

    CAS  PubMed  Google Scholar 

  • Nestler EJ (1992) Molecular mechanisms of drug addiction. J Neurosci 12:2439–2450

    CAS  PubMed  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underling addiction. Nat Rev Neurosci 2:119–128

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449

    Article  CAS  PubMed  Google Scholar 

  • Nicola SM (2007) The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacol 191:521–550

    Article  CAS  Google Scholar 

  • O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–454

    Article  PubMed  CAS  Google Scholar 

  • Olson VG, Zabetian CP, Bolanos CA, Edwards S, Barrot M, Eisch AJ, Hughes T, Self DW, Neve RL, Nestler EJ (2005) Regulation of drug reward by CREB: evidence for two functionally distinct subregions of the ventral tegmental area. J Neurosci 25: 5553–5562

    Article  CAS  PubMed  Google Scholar 

  • Owen AM (2004) Cognitive dysfunction in Parkinson’s disease: the role of frontostriatal circuitry. Neuroscientist 10:525–537

    Article  PubMed  Google Scholar 

  • Owen AM, Beksinska M, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Sahakian BJ, Robbins TW (1993) Visuospatial memory deficits at different stages of Parkinson’s disease. Neuropsychol 31:627–644

    Article  CAS  Google Scholar 

  • Owen AM, Iddon JL, Hodges JR, Summers BA, Robbins TW (1997) Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychol 35:519–532

    Article  CAS  Google Scholar 

  • Parsons LH, Koob GF, Weiss F (1995) Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine. J Pharmacol Exp Thera 274:1182–1191

    CAS  Google Scholar 

  • Pascual-Leone A, Grafman J, Clark K, Stewart M, Massaquoi S, Lou J-S, Hallett M (1993) Procedural learning in Parkinson’s disease and cerebellar degeneration. Ann Neurol 34:594–602

    Article  CAS  PubMed  Google Scholar 

  • Petrovich GD, Holland PC, Gallagher M (2005) Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J Neurosci 25:8295–8302

    Article  CAS  PubMed  Google Scholar 

  • Pillon B, Ertle S, Deweere B, Sarazin M, Agid Y, Dubois B (1996) Memory for spatial location is affected in Parkinson’s disease. Neuropsychol 34:77–84

    Article  CAS  Google Scholar 

  • Pillon B, Ertle S, Deweer B, Bonnet AM, Vidailhet M, Dubois B (1997) Memory for spatial location in ‘de novo’ parkinsonian patients. Neuropsychol 35:221–228

    Article  CAS  Google Scholar 

  • Pioli EY, Meissner W, Sohr R, Gross CE, Bezard E, Bioulac BH (2008) Differential behavioral effects of partial bilateral lesions of ventral tegmental area or substantia nigra pars compacta in rats. Neurosci 4:1213–1224

    Article  CAS  Google Scholar 

  • Redgrave P, Prescott T, Gurney KN (1999) The basal ganglia: a vertebrate solution to the selection problem. Neurosci 89:1009–23

    Article  CAS  Google Scholar 

  • Redgrave P, Gurney K, Reynolds J (2008) What is reinforced by phasic dopamine signals? Brain Res Rev 58:322–339

    Article  CAS  PubMed  Google Scholar 

  • Rogers RD, Sahakian BJ, Hodges JR, Polkey CE, Kennard C, Robbins TW (1998) Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease. Brain 121(Pt 5):815–42

    Article  PubMed  Google Scholar 

  • Roncacci S, Troisi E, Carlesimo GA, Nocentini U, Caltagirone C (1996) Implicit memory in parkinsonian patients: evidence for defi cient skill learning. Eur Neurol 36:154–9

    Article  CAS  PubMed  Google Scholar 

  • Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R (2002) Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain 125: 276–289

    Article  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    CAS  PubMed  Google Scholar 

  • Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 5:203–210

    Article  CAS  Google Scholar 

  • Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610

    CAS  PubMed  Google Scholar 

  • See RE, Kruzich PJ, Grimm JW (2001) Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a rat model of relapse to cocaine-seeking behavior. Psychopharmacol 154:301–310

    Article  CAS  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 1985(5):776–794

    Google Scholar 

  • Shaw-Lutchman TZ, Barrot M, Wallace T, Gilden L, Zachariou V, Impey S, Duman RS, Storm D, Nestler EJ (2002) Regional and cellular mapping of cAMP response element-mediated transcription during naltrexone-precipitated morphine withdrawal. J Neurosci 9:3663–72

    Google Scholar 

  • Shippenberg TS, Rea W (1997) Sensitization to the behavioral effects of cocaine: modulation by dynorphin and kappaopioid receptor agonists. Pharmacol Biochem Behav 57:449–455

    Article  CAS  PubMed  Google Scholar 

  • Slabosz A, Lewis SJ, Smigasiewicz K, Szymura B, Barker RA, Owen AM (2006) The role of learned irrelevance in attentional set-shifting impairments in Parkinson’s disease. Neuropsychol 20:578–588

    Article  Google Scholar 

  • Stebbins GT, Gabrieli JDE, Masciari F, Monti L, Goetz CG (1999) Delayed recognition memory in Parkinson’s disease: a role for working memory? Neuropsychologia 37:503–510

    Article  CAS  PubMed  Google Scholar 

  • Tadaiesky MT, Dombrowski PA, Figueiredo CP, Ferreira EC, Da Cunha C, Takahashi RN (2008) Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neurosci 156:830–840

    Article  CAS  Google Scholar 

  • Tamaru F (1997) Disturbances in higher function in Parkinson’s disease. Eur Neurol 38:33–6

    Article  PubMed  Google Scholar 

  • Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050

    Article  CAS  PubMed  Google Scholar 

  • Thomas V, Reymann JM, Lieury A, Allain H (1996) Assessment of procedural memory in Parkinson’s disease. Prog NeuroPsychopharmacol Biol Psychiatry 20:641–660

    Article  CAS  PubMed  Google Scholar 

  • Tindell AJ, Berridge KC, Zhang J, Peciña S, Aldridge JW (2005) Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine. Eur J Neurosci 22:2617–2634

    Article  PubMed  Google Scholar 

  • Tricomi EM, Delgado MR, Fiez JA (2004) Modulation of caudate activity by action contingency. Neuron 41:281–292

    Article  CAS  PubMed  Google Scholar 

  • Tröster AI, Woods SP (2003) Neuropsychological aspects of Parkinson’s disease and parkinsonian syndromes. In: Pahwa R, Lyons KE, Koller WC (eds) Handbook of Parkinson’s disease. Dekker, New York, pp 127–57

    Google Scholar 

  • Turgeon SM, Pollack AE, Fink JS (1997) Enhanced CREB phosphorylation and changes in c-Fos and FRA expression in striatum accompany amphetamine sensitization. Brain Res 749:120–126

    Article  CAS  PubMed  Google Scholar 

  • Valdez GR, Roberts AJ, Chan K, Davis H, Brennan M, Zorrilla EP, Koob GF (2002) Increased ethanol self-administration and anxiety-like behavior during acute ethanol withdrawal and protracted abstinence: regulation by corticotropin-releasing factor. Alcohol Clin Exp Res 26:1494–1501

    CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Jayne M, Franceschi D, Wong C, Gatley SJ, Gifford AN, Ding YS, Pappas N (2002) “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44:175–180

    Article  CAS  PubMed  Google Scholar 

  • Walter U, Hoeppner J, Prudente-Morrissey L, Horowski S, Herpertz SC, Benecke R (2007) PD-like midbrain sonography abnormalities are frequent in depressive disorders. Brain 130(Pt 7):1799–17807

    Article  PubMed  Google Scholar 

  • Walters CL, Godfrey M, Li X, Blendy JA (2005) Alterations in morphine-induced reward, locomotor activity and regulation in CREB-deficient mice. Brain Res 1032:193–199

    Article  CAS  PubMed  Google Scholar 

  • Willner P (1983) Dopamine and depression: a review of recent evidence. I. Empirical studies. Brain Res 3:211–224

    Google Scholar 

  • Winter C, von Rumohr A, Mundt A, Petrus D, Klein J, Lee T, Morgenstern R, Kupsch A, Juckel G (2007) Lesions of dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area enhance depressive-like behavior in rats. Behav Brain Res 2:133–141

    Article  CAS  Google Scholar 

  • Wise RA (1978) Catecholamine theories of reward: a critical review. Brain Res 2:215–247

    Article  Google Scholar 

  • Wise RA (1980) The dopamine synapse and the notion of ‘pleasure centers’ in the brain. Trends Neurosci 3:91–95

    Article  CAS  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:1–12

    Article  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychostimulant theory of addiction. Psychol Rev 94:469–492

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225

    Article  CAS  PubMed  Google Scholar 

  • Wyvell CL, Berridge KC (2001) Incentive-sensitization by previous amphetamine exposure: increased cue-triggered ‘wanting’ for sucrose reward. J Neurosci 21:7831–7840

    CAS  PubMed  Google Scholar 

  • Yim HJ, Gonzales RA (2000) Ethanol-induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition. Alcohol 2:107–115

    Article  Google Scholar 

  • Zald DH, Boileau I, El-Dearedy W, Gunn R, McGlone F, Dichter GS, Dagher A (2004) Dopamine transmission in the human striatum during monetary reward tasks. J Neurosci 24:4105–4112

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Payne JL, Singh J, Quiroz JA, Luckenbaugh DA, Denicoff KD, Charney DS, Manji HK (2004) Pramipexole for bipolar II depression: a placebo-controlled proof of concept study. Biol Psychiatry 1:54–60

    Article  CAS  Google Scholar 

  • Zgaljardic DJ, Foldi NS, Borod JC (2004) Cognitive and behavioral dysfunction in Parkinson’s disease: neurochemical and clinicopathological contributions. J Neural Transm 111:1287–1301

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Wilson CJ (2002) Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. J Neurophysiol 87:1007–1017

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms Suzana Meinhardt for the English revision of the manuscript. DaC, RA, MABFV are recipient of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)/ Brazil fellowships. This work was supported by grants of Institutos do Milenio (CNPq/MCT), Pronex Paraná, Fundação Araucária, and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Da Cunha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien Printed in Germany

About this chapter

Cite this chapter

Da Cunha, C. et al. (2009). Non‐motor Function of the Midbrain Dopaminergic Neurons. In: Giovanni, G., Di Matteo, V., Esposito, E. (eds) Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Journal of Neural Transmission. Supplementa, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-211-92660-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-92660-4_12

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-92659-8

  • Online ISBN: 978-3-211-92660-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics