Skip to main content

The Neurobiology of the Substantia Nigra Pars Compacta: from Motor to Sleep Regulation

  • Chapter
  • First Online:

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 73))

Abstract

Clinical characteristics of Parkinson´s disease (PD) are the result of the degeneration of the neurons of the substantia nigra pars compacta (SNpc). Several mechanisms are implicated in the degeneration of nigrostriatal neurons such as oxidative stress, mitochondrial dysfunction, protein misfolding, disturbances of dopamine (DA) metabolism and transport, neuroinflammation, and necrosis/apoptosis. The literature widely explores the neurotoxic models elicited by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA). Because of the models, it is known that basal ganglia, particularly substantia nigra, have been related to a diversity of functions, from motor to sleep regulation. Nevertheless, a current debate concerning the role of DA on the sleep–wake cycle is in progress. In summary, it is suggested that the dopaminergic system is implicated in the physiology of sleep, with particular regard to the influence of the SNpc neurons. The understanding of the functioning and connectivity of the SNpc neurons has become fundamental to discovering the neurobiology of these neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrade LA, Lima JG, Tufik S, Bertolucci PH, Carlini EA (1987) Rem sleep deprivation in an experimental model of Parkinson’s disease. Arq Neuropsiquiatr 45(3):217–223

    CAS  PubMed  Google Scholar 

  • Arnulf I (2006) Sleep and wakefulness disturbances in Parkinson’s disease. J Neural Transm Suppl 70:357–360

    PubMed  Google Scholar 

  • Arnulf I, Konofal E, Merino-Andreu M, Houeto JL, Mesnage V, Welter ML, Lacomblez L, Golmard JL, Derenne JP, Agid Y (2002) Parkinson’s disease and sleepiness: an integral part of PD. Neurology 58(7):1019–1024

    CAS  PubMed  Google Scholar 

  • Asanuma M, Miyazaki I (2006) Nonsteroidal anti-inflammatory drugs in Parkinson’s disease: possible involvement of quinone formation. Expert Rev Neurother 6(9):1313–1325

    CAS  PubMed  Google Scholar 

  • Barbeau A et al. (1961) Les catecholamines dans la maladie de Parkinson. In Georg (ed) CMonoamines et Syste`me Nerveux Central. Geneva, pp. 247-262

    Google Scholar 

  • Barnham JK, Masters AB, Bush A (2004) Neurodegenerative disease and oxidative stress. Nat Rev Drug Discov 3:205–214

    CAS  PubMed  Google Scholar 

  • Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73(3):1127–1137

    CAS  PubMed  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1961) Der L-3, 4-dioxyphenylalanin (L-DOPA)-effect bei der Parkinson-akinese. Klin Wschr 73:787–788

    CAS  Google Scholar 

  • Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson´s disease. The Journal of the American Society for Experimental NeuroTherapeutics 2:484–494

    Google Scholar 

  • Braga R, Kouzmine I, Canteras NS, Da Cunha C (2005) Lesion of the substantia nigra, pars compacta impairs delayed alternation in a Y-maze in rats. Exp Neurol 192(1):134–141

    CAS  PubMed  Google Scholar 

  • Carlini EA (1983) REM sleep deprivation and dopamine in the CNS. Rev Pure Appl Pharmacol Sci 4(1):1–25

    CAS  PubMed  Google Scholar 

  • Carlini EA, Lindsey CJ, Tufik S (1977) Cannabis, catecholamines, rapid eye movement sleep and aggressive behaviour. Br J Pharmacol 61(3):371–379

    CAS  PubMed  Google Scholar 

  • Chen H, Zhang SM, Hernan MA, Schwarzschild MA, Willett WC, Colditz GA, Speizer FE, Ascherio A (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60(8):1059–1064

    PubMed  Google Scholar 

  • Chiba K, Trevor A, CJ N (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120:574–578

    CAS  PubMed  Google Scholar 

  • Cotzias GC (1968) L-DOPA for Parkinsonism. N Engl J Med 278:630

    CAS  PubMed  Google Scholar 

  • Cui K, Luo X, Xu K, Vem Murthy MR (2004) Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuropsychopharmacol Biol Psychiatry 28:771–799

    CAS  PubMed  Google Scholar 

  • Da Cunha C, Gevaerd MS, Vital MA, Miyoshi E, Andreatini R, Silveira R, Takahashi RN, Canteras NS (2001) Memory disruption in rats with nigral lesions induced by MPTP: a model for early Parkinson’s disease amnesia. Behav Brain Res 124(1):9–18

    PubMed  Google Scholar 

  • Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G (2007) Prominent Burst Firing of Dopaminergic Neurons in the Ventral Tegmental Area during Paradoxical Sleep. Neuropsychopharmacology 32(6):1232–1241

    CAS  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    CAS  PubMed  Google Scholar 

  • De Cock VC, Vidailhet M, Leu S, Texeira A, Apartis E, Elbaz A, Roze E, Willer JC, Derenne JP, Agid Y, Arnulf I (2007) Restoration of normal motor control in Parkinson’s disease during REM sleep. Brain 130(Pt 2):450–456

    PubMed  Google Scholar 

  • Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–307

    CAS  PubMed  Google Scholar 

  • Di Matteo V, Pierucci M, Di Giovanni G, Di Santo A, Poggi A, Benigno A, Esposito E (2006) Aspirin protects striatal dopaminergic neurons from neurotoxin-induced degeneration: an in vivo microdialysis study. Brain Res 1095(1):167–177

    PubMed  Google Scholar 

  • Dzirasa K, Ribeiro S, Costa R, Santos LM, Lin SC, Grosmark A, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MA (2006) Dopaminergic control of sleep-wake states. J Neurosci 26(41):10577–10589

    CAS  PubMed  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von noradrenalin und dopamine (3-hydroxtyramin) im gehirn des menschen und ihr verhalten bei erkankungen des extrapyamidalen systems. Klin Wschr 38:1236–1239

    CAS  PubMed  Google Scholar 

  • Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G (2007) Non-steroidal anti-inflammatory drugs in Parkinson’s disease. Exp Neurol 205(2):295–312

    CAS  PubMed  Google Scholar 

  • Faull RL, Laverty R (1969) Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Exp Neurol 23:332–340

    CAS  PubMed  Google Scholar 

  • Ferger B, Teismann P, Earl CD, Kuschinsky K, Oertel WH (1999) Salicylate protects against MPTP-induced impairments in dopaminergic neurotransmission at the striatal and nigral level in mice. Naunyn Schmiedebergs Arch Pharmacol 360(3):256–261

    CAS  PubMed  Google Scholar 

  • Ferro MM, Bellissimo MI, Anselmo-Franci JA, Angellucci ME, Canteras NS, Da Cunha C (2005) Comparison of bilaterally 6-OHDA- and MPTP-lesioned rats as models of the early phase of Parkinson’s disease: histological, neurochemical, motor and memory alterations. J Neurosci Methods 148(1):78–87

    CAS  PubMed  Google Scholar 

  • Franco J, Prediger RD, Pandolfo P, Takahashi RN, Farina M, Dafre AL (2007) Antioxidant responses and lipid peroxidation following intranasal 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) administration in rats: increased susceptibility of olfactory bulb. Life Sci 80(20):1906–1914

    CAS  PubMed  Google Scholar 

  • Gainetdinov RR, Fumagalli F, Jones SR, Caron MG (1997) Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. J Neurochem 69:1322–1325

    CAS  PubMed  Google Scholar 

  • Gevaerd MS, Miyoshi E, Silveira R, Canteras NS, Takahashi RN, Da Cunha C (2001) L-Dopa restores striatal dopamine level but fails to reverse MPTP-induced memory deficits in rats. Int J Neuropsychopharmacol 4(4):361–370

    CAS  PubMed  Google Scholar 

  • Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem 64(2):919–924

    CAS  PubMed  Google Scholar 

  • Heikkila RE, Hess A, Duvoisin RC (1984) Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in mice. Science 224:1451–1453

    CAS  PubMed  Google Scholar 

  • Hogl B, Rothdach A, Wetter TC, Trenkwalder C (2003) The effect of cabergoline on sleep, periodic leg movements in sleep, and early morning motor function in patients with Parkinson’s disease. Neuropsychopharmacology 28(10):1866–1870

    PubMed  Google Scholar 

  • Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30(5):188–193

    CAS  PubMed  Google Scholar 

  • Jones BE (2003) Arousal systems. Front Biosci 8:s438–s451

    CAS  PubMed  Google Scholar 

  • Kebabian JW, Calne BD (1979) Multiple receptors for dopamine. Nature 277:93–96

    CAS  PubMed  Google Scholar 

  • Kebabian JW, Petzold GL, Greengard P (1972) Dopamine-sensitive anenylate cyclase in caudate nucleus of rat brain and its similarity to the dopamine receptor. Proc Natl Acad Sci USA 69:2145–2149

    CAS  PubMed  Google Scholar 

  • Laloux C, Derambure P, Kreisler A, Houdayer E, Bruezière S, Bordet R, Destée A, Monaca C (2008) MPTP-treated mice: long-lasting loss of nigral TH-ir neurons but not paradoxical sleep alterations. Exp Brain Res 186:635–642

    PubMed  Google Scholar 

  • Lane E, Dunnett S (2007) Animal models of Parkinson´s disease and L-dopa induced dyskinesia: How close are we to the clinic? Psychopharmacology (Berl) 199:303–312

    Google Scholar 

  • Lang AE, Lozano AM (1998) Parkinson´s disease. First of two parts. N Engl J Med 339:1044–1053

    CAS  PubMed  Google Scholar 

  • Langston JW, Ballard PA Jr (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1, 2, 5, 6-tetrahydropyridine. N Engl J Med 309(5):310

    CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980

    CAS  PubMed  Google Scholar 

  • Larsen JP, Tandberg E (2001) Sleep disorders in patients with Parkinson’s disease: epidemiology and management. CNS Drugs 15(4):267–275

    CAS  PubMed  Google Scholar 

  • Lee CS, Sauer H, Bjorklund A (1996) Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by intrastriatal 6- hydroxydopamine in the rat. Neuroscience 72: 641–653

    CAS  PubMed  Google Scholar 

  • Lelkes Z, Stenberg D, Porkka-Heiskanen T (1991) Effect of MPTP on sleep in rats. Sleep Res 20A:154

    Google Scholar 

  • Liang LP, Patel M (2004) Iron-sulfur enzyme mediated mitochondrial superoxide toxicity in experimental Parkinson’s disease. J Neurochem 90(5):1076–1084

    CAS  PubMed  Google Scholar 

  • Lima MMS, Braga Reksidler A, Marques Zanata S, Bueno Machado H, Tufik S, Vital MA (2006) Different parkinsonism models produce a time-dependent induction of COX-2 in the substantia nigra of rats. Brain Res 1101(1):117–125

    CAS  Google Scholar 

  • Lima MMS, Andersen ML, Reksidler AB, Vital MABF, Tufik S (2007) The role of the substantia nigra pars compacta in regulating sleep patterns in rats. PLoS ONE 2:e513

    PubMed  Google Scholar 

  • Lima MM, Andersen ML, Reksidler AB, Silva A, Zager A, Zanata SM, Vital MA, Tufik S (2008a) Blockage of dopaminergic D(2) receptors produces decrease of REM but not of slow wave sleep in rats after REM sleep deprivation. Behav Brain Res 188(2):406–411

    CAS  PubMed  Google Scholar 

  • Lima MMS, Reksidler AB, Vital MABF (2008b) The dopaminergic dilema: Sleep or wake? implications in Parkinson´s disease. Biosci Hypothesis 1:9–13

    CAS  Google Scholar 

  • Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26(1):193–202

    CAS  PubMed  Google Scholar 

  • Marsden CA (2006) Dopamine: the rewarding years. Br J Pharmacol 147(Suppl 1):S136–S144

    CAS  PubMed  Google Scholar 

  • McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8(4):302–330

    PubMed  Google Scholar 

  • Mena-Segovia J, Bolam JP, Magill PJ (2003) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 27:585–588

    Google Scholar 

  • Meredith GE, Totterdell S, Potashkin JA, Surmeier J (2008) Modeling PD pathogenesis in mice: Advantages of a chronic MPTP protocol. Parkinsonism Relat Disord 14:S112–S115

    PubMed  Google Scholar 

  • Miyawaki E, Lyons K, Pahwa R, Troster AI, Hubble J, Smith D, Busenbark K, McGuire D, Michalek D, Koller WC (1997) Motor complications of chronic levodopa therapy in Parkinson’s disease. Clin Neuropharmacol 20(6):523–530

    CAS  PubMed  Google Scholar 

  • Miyoshi E, Wietzikoski S, Camplessei M, Silveira R, Takahashi RN, Da Cunha C (2002) Impaired learning in a spatial working memory version and in a cued version of the water maze in rats with MPTP-induced mesencephalic dopaminergic lesions. Brain Res Bull 58(1):41–47

    CAS  PubMed  Google Scholar 

  • Monti JM (1982) Catecholamines and the sleep-wake cycle. I. EEG and behavioral arousal. Life Sci 30(14):1145–1157

    CAS  PubMed  Google Scholar 

  • Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11(2):113–133

    PubMed  Google Scholar 

  • Nunes GP, Tufik S, Nobrega JN (1994) Autoradiographic analysis of D1 and D2 dopaminergic receptors in rat brain after paradoxical sleep deprivation. Brain Res Bull 34(5):453–456

    CAS  Google Scholar 

  • Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3(8):591–605

    CAS  PubMed  Google Scholar 

  • Perry JC, Da Cunha C, Anselmo-Franci J, Andreatini R, Miyoshi E, Tufik S, Vital MA (2004) Behavioural and neurochemical effects of phosphatidylserine in MPTP lesion of the substantia nigra of rats. Eur J Pharmacol 484(2–3):225–233

    CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Tuomisto L, Ylinen M, Stenberg D (1994) The effect of REM sleep deprivation on histamine concentrations in different brain areas. Life Sci 54(22):1719–1726

    CAS  PubMed  Google Scholar 

  • Portas CM, Bjorvatn B, Ursin R (2000) Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol 60(1):13–35

    CAS  PubMed  Google Scholar 

  • Porter CC, Totaro JA, Stone CA (1963) Effect of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the hearts of mice. J Pharmacol Exp Ther 140:308–316

    CAS  PubMed  Google Scholar 

  • Prediger RD, Batista LC, Medeiros R, Pandolfo P, Florio JC, Takahashi RN (2006) The risk is in the air: Intranasal administration of MPTP to rats reproducing clinical features of Parkinson’s disease. Exp Neurol 202(2):391–403

    CAS  PubMed  Google Scholar 

  • Przedborski S (2005) Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism Relat Disord 11(Suppl 1):S3–S7

    PubMed  Google Scholar 

  • Przedborski S, Tieu K, Perier C, Vila M (2004) MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 36(4):375–379

    CAS  PubMed  Google Scholar 

  • Pulst S-M (2003) Genetics of Movement disorders. Academic Press San Diego, California USA

    Google Scholar 

  • Pungor K, Papp M, Kekesi K, Juhasz G (1990) A novel effect of MPTP: the selective suppression of paradoxical sleep in cats. Brain Res 525(2):310–314

    CAS  PubMed  Google Scholar 

  • Reavill C, Jenner P, Marsden CD (1980) Metabolite involvement in bromocriptine-induced circling behaviour in rodents. J Pharm Pharmacol 32(4):278–284

    CAS  PubMed  Google Scholar 

  • Reksidler AB, Lima MMS, Zanata SM, Machado HB, da Cunha C, Andreatini R, Tufik S, Vital MABF (2007) The COX-2 inhibitor parecoxib produces neuroprotective effects in MPTP-lesioned rats. Eur J Pharmacol 560(2–3):163–175

    CAS  PubMed  Google Scholar 

  • Reksidler AB, Lima MMS, Dombrowski P, Andersen ML, Zanata SM, Andreatini R, Tufik S, Vital MABF (2008) Repeated intranigral MPTP administration: A new protocol of prolonged locomotor impairment mimicking Parkinson’s disease. J Neurosci Methods 167(2):268–277

    CAS  PubMed  Google Scholar 

  • Reksidler AB, Lima MMS, Dombrowski P, Barnabé GF, Andersen ML, Tufik S, Vital MABF (2009) Distinct effects of intranigral L-DOPA infusion in the MPTP rat model of Parkinson’s disease. In: G. Di Giovanni, V. Di Matteo, E. Esposito (ed) Birth, life and death of dopaminergic neurons in the Substantia Nigra. Journal of Neural Transmission, Vol 73, Springer Heidelberg

    Google Scholar 

  • Rollema H, Kuhr WG, Kranenborg G, De Vries J, Van den Berg C (1988) MPP+-induced efflux of dopamine and lactate from rat striatum have similar time courses as shown by in vivo brain dialysis. J Pharmacol Exp Ther 245(3):858–866

    CAS  PubMed  Google Scholar 

  • Sairam K, Saravanan KS, Banerjee R, Mohanakumar KP (2003) Non-steroidal anti-inflammatory drug sodium salicylate, but not diclofenac or celecoxib, protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Brain Res 966(2):245–252

    CAS  PubMed  Google Scholar 

  • Schapira AHV, Bezard E, Brotchie J (2006) Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 5:845–854

    CAS  PubMed  Google Scholar 

  • Sedelis M, Schwarting RKW, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res 125:109–125

    CAS  PubMed  Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptics/dopamine receptors. Nature 261: 717–719

    CAS  PubMed  Google Scholar 

  • Serra PA, Sciola L, Delogu MR, Spano A, Monaco G, Miele E (2002) The neurotoxin MPTP induces apoptosis in mouse nigro-striatal glia Relevance to nigral neuronal death and striatal neurochemical changes. J Biol Chem 277:34451–34461

    CAS  PubMed  Google Scholar 

  • Siegel JM (2004) Hypocretin (orexin): role in normal behavior and neuropathology. Annu Rev Psychol 55:125–148

    PubMed  Google Scholar 

  • Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11(3–4):151–167

    CAS  PubMed  Google Scholar 

  • Sonsalla PK, Heikkila RE (1986) The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur Eur. J. Pharmacol 129:339–345

    CAS  PubMed  Google Scholar 

  • Speciale SG (2002) Insights into parkinsonian neurodegeneration. Neurotoxicol Teratol 24:607–620

    CAS  PubMed  Google Scholar 

  • Speciale SG, Liang CL, Sonsalla PK, Edwards RH, German DC (1998) The neurotoxin 1-methyl-4-phenylpyridinium is sequestered within neurons that contain the vesicular monoamine transporter. Neuroscience 84(4):1177–1185

    CAS  PubMed  Google Scholar 

  • Steininger TL, Alam MN, Gong H, Szymusiak R, McGinty D (1999) Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 840(1–2):138–147

    CAS  PubMed  Google Scholar 

  • Steriade M, Amzica F, Nunez A (1993) Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. J Neurophysiol 70(4):1385–1400

    CAS  PubMed  Google Scholar 

  • Sundström E, Strömberg I, Tsutsumi T, Olson I, Josson G (1987) Studies on the effect of 1-methy-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) on central catecholamine neurons in C57BL/6 mice. Comparison with three other strains of mice. Brain Res 405: 26–38

    PubMed  Google Scholar 

  • Tandberg E, Larsen JP, Karlsen K (1998) A community-based study of sleep disorders in patients with Parkinson’s disease. Mov Disord 13(6):895–899

    CAS  PubMed  Google Scholar 

  • Tatton NA, Kish SJ (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77: 1037–1048

    CAS  PubMed  Google Scholar 

  • Teismann P, Ferger B (2001) Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse 39(2):167–174

    CAS  PubMed  Google Scholar 

  • Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, Vila M, Jackson-Lewis V, Przedborski S (2003a) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci USA 100(9):5473–5478

    CAS  PubMed  Google Scholar 

  • Teismann P, Vila M, Choi DK, Tieu K, Wu DC, Jackson-Lewis V, Przedborski S (2003b) COX-2 and neurodegeneration in Parkinson’s disease. Ann NY Acad Sci 991:272–277

    CAS  PubMed  Google Scholar 

  • Thobois S, Delamarre-Damier F, Derkinderen P (2005) Treatment of motor dysfunction in Parkinson’s disease: an overview. Clin Neurol Neurosurg 107(4):269–281

    PubMed  Google Scholar 

  • Thomson F et al (2001) Parkinson’s disease: treatment. Pharm J 267:600–613

    Google Scholar 

  • Truong DD, Bhidayasiri R, Wolters E (2008) Management of non-motor symptoms in advanced Parkinson disease. J Neurol Sci 266(1–2):216–228

    PubMed  Google Scholar 

  • Tufik S (1981a) Changes of response to dopaminergic drugs in rats submitted to REM-sleep deprivation. Psychopharmacology (Berl) 72(3):257–260

    CAS  Google Scholar 

  • Tufik S (1981b) Increased responsiveness to apomorphine after REM sleep deprivation: supersensitivity of dopamine receptors or increase in dopamine turnover? J Pharm Pharmacol 33(11):732–738

    CAS  PubMed  Google Scholar 

  • Tufik S, Lindsey CJ, Carlini EA (1978) Does REM sleep deprivation induce a supersensitivity of dopaminergic receptors in the rat brain? Pharmacology 16(2):98–105

    CAS  PubMed  Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    CAS  PubMed  Google Scholar 

  • Ungerstedt U (1971a) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:95–122

    CAS  PubMed  Google Scholar 

  • Ungerstedt U (1971b) Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:69–93

    CAS  PubMed  Google Scholar 

  • Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150(8):963–976

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CAPES (PRODOC-Farmacologia UFSC to MMSL). MABFV is a recipient of CNPq fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo M. S. Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien Printed in Germany

About this chapter

Cite this chapter

Lima, M.M.S., Reksidler, A.B.B., Vital, M.A.B.F. (2009). The Neurobiology of the Substantia Nigra Pars Compacta: from Motor to Sleep Regulation. In: Giovanni, G., Di Matteo, V., Esposito, E. (eds) Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Journal of Neural Transmission. Supplementa, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-211-92660-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-92660-4_11

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-92659-8

  • Online ISBN: 978-3-211-92660-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics