Abstract
Applied dynamics may be considered as integration platform for simulation in various fields of engineering like vehicle system dynamics, dynamics of machines and mechanisms and robotics. In the present contribution we discuss classical numerical simulation techniques of nonlinear system dynamics, their use in multibody system simulation and extensions to typical problems of applied dynamics like continuous and discrete controllers and multidisciplinary applications. A frequently used alternative approach to the analysis of multidisciplinary problems is based on the coupling of two or more monodisciplinary simulation packages. Typical numerical problems of such co-simulation techniques will be considered and illustrated by numerical tests.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
M. Arnold. A perturbation analysis for the dynamical simulation of mechanical multibody systems. Applied Numerical Mathematics, 18:37–56, 1995.
M. Arnold. Numerical problems in the dynamical simulation of wheel-rail systems. Z. Angew. Math. Mech., Proceedings of ICIAM 95, Issue 3:151–154, 1996.
M. Arnold. Multi-rate time integration for large scale multibody system models. In P. Eberhard, editor, IUTAM Symposium on Multiscale Problems in Multibody System Contacts, pages 1–10. Springer, 2007.
M. Arnold and M. Günther. Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT Numerical Mathematics, 41:1–25, 2001.
M. Arnold and H. Netter. Wear profiles and the dynamical simulation of wheel-rail systems. In M. Brøns, M.P. Bendsøe, and M.P. Sørensen, editors, Progress in Industrial Mathematics at ECMI 96, pages 77–84. Teubner, Stuttgart, 1997.
M. Arnold, V. Mehrmann, and A. Steinbrecher. Index reduction in industrial multibody system simulation. Technical Report IB 532-01-01, DLR German Aerospace Center, Institute of Aeroelasticity, Vehicle System Dynamics Group, 2001.
M. Arnold, A. Fuchs, and C. Führer. Efficient corrector iteration for DAE time integration in multibody dynamics. Comp. Meth. Appl. Mech. Eng., 195:6958–6973, 2006.
M. Arnold, B. Burgermeister, and A. Eichberger. Linearly implicit time integration methods in real-time applications: DAEs and stiff ODEs. Multibody System Dynamics, 17:99–117, 2007a.
M. Arnold, Ch. Weidemann, and L. Mauer. Stepsize control versus fixed stepsize time integration: Theory and practical experience. In C.L. Bottasso, P. Masarati, and L. Trainelli, editors, Proc. of Multibody Dynamics 2007 (ECCOMAS Thematic Conference), Milan, Italy, 2007b.
U. Ascher and L.R. Petzold. Computer Methods for Ordinary Differential Equations and Differential—Algebraic Equations. SIAM, Philadelphia, 1998.
U.M. Ascher, H. Chin, and S. Reich. Stabilization of DAEs and invariant manifolds. Numer. Math., 67:131–149, 1994.
J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering, 1:1–16, 1972.
H. Brandl, R. Johanni, and M. Otter. A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix. In P. Kopacek, I. Troch, and K. Desoyer, editors, Theory of Robots, pages 95–100, Oxford, 1988. Pergamon Press.
P.C. Breedveld. Port based modelling of multidomain physical systems in terms of bond graphs. — Published in this volume, 2008.
K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical solution of initial-value problems in differential-algebraic equations. SIAM, Philadelphia, 2nd edition, 1996.
O. Brüls, A. Cardona, and M. Géradin. Modelling, simulation and control of flexible multibody systems. — Published in this volume, 2008.
M. Busch. Entwicklung einer SIMPACK-Modelica/Dymola-Schnittstelle. Diploma Thesis, Martin Luther University Halle-Wittenberg, Institute of Computer Science, 2007.
M. Busch, M. Arnold, A. Heckmann, and S. Dronka. Interfacing SIMPACK to Modelica / Dymola for multi-domain vehicle system simulations. SIMPACK News (INTEC GmbH, Wessling, Germany), 11(2):01–03, 2007.
T.F. Coleman, B.S. Garbow, and J.J. Moré. Software for estimating sparse Jacobian matrices. ACM Transactions on Mathematical Software, 10: 329–345, 1984.
P. Deuflhard, E. Hairer, and J. Zugck. One-step and extrapolation methods for differential-algebraic systems. Numer. Math., 51:501–516, 1987.
S. Dietz. Vibration and Fatigue Analysis of Vehicle Systems using Component Modes. Fortschritt-Berichte VDI Reihe 12, Nr. 401. VDI-Verlag, Düsseldorf, 1999.
S. Dietz. The new powerful linear subsystem solver for flexible bodies in multi-body systems. In J.M. Goicolea, J. Cuadrado, and J.C. García Orden, editors, Proc. of Multibody Dynamics 2005 (ECCOMAS Thematic Conference), Madrid, Spain, 2005.
S. Dietz, H. Netter, and D. Sachau. Fatigue life prediction by coupling finite-element and multibody systems calculations. In Proceedings of DETC’97, ASME Design Engineering Technical Conferences DETC/VIB-4229, Sacramento, California, 1997.
J.R. Dormand and P.J. Prince. A family of embedded Runge-Kutta formulae. J. Comp. Appl. Math., 6:19–26, 1980.
S. Dronka. Die Simulation gekoppelter Mehrkörper-und Hydraulik-Modelle mit Erweiterung für Echtzeitsimulation. Shaker Verlag, Aachen, 2004.
E. Eich. Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Numer. Anal., 30:1467–1482, 1993.
E. Eich-Soellner and C. Führer. Numerical Methods in Multibody Dynamics. Teubner-Verlag, Stuttgart, 1998.
A. Eichberger. Simulation von Mehrkörpersystemen auf parallelen Rechnerarchitekturen. Fortschritt-Berichte VDI Reihe 8, Nr. 332. VDI-Verlag, Düsseldorf, 1993.
H. Elmqvist, M. Otter, and F.E. Cellier. Inline integration: A new mixed symbolic / numeric approach for solving differential-algebraic equation systems. In Proc. ESM’95, European Simulation Multiconference, Prague, Czech Republic, June 5–8, 1995, pages xxiii–xxxiv, 1995.
C. Führer. Differential-algebraische Gleichungssysteme in mechanischen Mehrkörpersystemen. Theorie, numerische Ansätze und Anwendungen. Technical report, TU München, Mathematisches Institut und Institut für Informatik, 1988.
C. Führer and B. Leimkuhler. Numerical solution of differential-algebraic equations for constrained mechanical motion. Numer. Math., 59:5–69, 1991.
C.W. Gear and R.R. Wells. Multirate linear multistep methods. BIT, 24: 484–502, 1984.
C.W. Gear, B. Leimkuhler, and G.K. Gupta. Automatic integration of Euler-Lagrange equations with constraints. J. Comp. Appl. Math., 12 & 13:77–90, 1985.
E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin Heidelberg New York, 2nd edition, 1996.
E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations. I. Nonstiff Problems. Springer-Verlag, Berlin Heidelberg New York, 2nd edition, 1993.
A. Heckmann, M. Arnold, and O. Vaculín. A modal multifield approach for an extended flexible body description in multibody dynamics. Multibody System Dynamics, 13:299–322, 2005.
G. Hippmann, M. Arnold, and M. Schittenhelm. Efficient simulation of bush and roller chain drives. In J. M. Goicolea, J. Cuadrado, and J.C. García Orden, editors, Proc. of Multibody Dynamics 2005 (ECCOMAS Thematic Conference), Madrid, Spain, 2005.
S. Iwnicki, editor. The Manchester Benchmarks for Rail Vehicle Simulation. Supplement to Vehicle System Dynamics, Vol. 31, Swets & Zeitlinger, Lisse, 1999.
K. Jackson. A survey of parallel numerical methods for initial value problems for ordinary differential equations. IEEE. Transactions on Magnetics, 27:3792–3797, 1991.
J.J. Kalker. Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer Academic Publishers, Dordrecht Boston London, 1990.
C.T. Kelley. Iterative Methods for Optimization. SIAM, Philadelphia, 1999.
C.T. Kelley. Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia, 2003.
W. Kortüm and P. Lugner. Systemdynamik und Regelung von Fahrzeugen. Springer-Verlag, Berlin Heidelberg New York, 1994.
W. Kortüm and W. Schiehlen. General purpose vehicle system dynamics software based on multibody formalisms. Vehicle System Dynamics, 14: 229–263, 1985.
W. Kortüm, W.O. Schiehlen, and M. Arnold. Software tools: From multibody system analysis to vehicle system dynamics. In H. Aref and J.W. Phillips, editors, Mechanics for a New Millennium, pages 225–238, Dordrecht, 2001. Kluwer Academic Publishers.
W.R. Krüger and M. Spieck. Aeroelastic effects in multibody dynamics. Vehicle System Dynamics, 41:383–399, 2004.
R. Kübler. Modulare Modellierung und Simulation mechatronischer Systeme. Fortschritt-Berichte VDI Reihe 20, Nr. 327. VDI-Verlag GmbH, Düsseldorf, 2000.
R. Kübler and W. Schiehlen. Two methods of simulator coupling. Mathematical and Computer Modelling of Dynamical Systems, 6:93–113, 2000.
P. Kunkel, V. Mehrmann, W. Rath, and J. Weickert. GELDA: A software package for the solution of general linear differential algebraic equations. SIAM J. Sci. Comp., 18:115–138, 1997.
S. Liebig, S. Helduser, M. Stüwing, and S. Dronka. Die Modellierung und Simulation gekoppelter mechanischer und hydraulischer Systeme (http://vwitme011.vkw.tu-dresden.de/TrafficForum/vwt_2001/beitraege/VWT18proceedings_pages505-524.pdf). In Proc. of the 18th Dresden Conference on Traffic and Transportation Sciences, September 17–18, 2001, pages 505–524, 2001.
Ch. Lubich, Ch. Engstler, U. Nowak, and U. Pöhle. Numerical integration of constrained mechanical systems using MEXX. Mech. Struct. Mach., 23:473–495, 1995.
P. Lugner and M. Plöchl, editors. Tyre Models for Vehicle Dynamics Analysis. Supplement 1 to Vol. 43 of Vehicle System Dynamics, 2005.
C.B. Moler. Numerical Computing with MATLAB. SIAM, Philadelphia, 2004.
J.J. Moré, D.C. Sorensen, B.S. Garbow, and K.E. Hillstrom. The MINPACK project. In W.J. Cowell, editor, Sources and Development of Mathematical Software, pages 88–111. Prentice-Hall, Englewood Cliffs, N.J., 1984.
N. Orlandea. Development and Application of Node-Analogous Sparsity-Oriented Methods for Simulation of Mechanical Dynamic Systems. PhD thesis, University of Michigan, 1973.
L.R. Petzold. Differential/algebraic equations are not ODEs. SIAM J. Sci. Stat. Comput., 3:367–384, 1982.
L.R. Petzold and P. Lötstedt. Numerical solution of nonlinear differential equations with algebraic constraints II: practical implications. SIAM J. Sci. Stat. Comput., 7:720–733, 1986.
A. Pfeiffer. Numerische Sensitivitätsanalyse unstetiger multidisziplinärer Modelle mit Anwendungen in der gradientenbasierten Optimierung. Fortschritt-Berichte VDI Reihe 20, Nr. 417. VDI-Verlag, Düsseldorf, 2008.
F. Pfeiffer and Ch. Glocker. Multibody Dynamics with Unilateral Contacts. Wiley & Sons, New York, 1996.
G. Rill. Simulation von Kraftfahrzeugen. Fundamentals and Advances in the Engineering Sciences. Vieweg, Braunschweig Wiesbaden, 1994.
R.E. Roberson and R. Schwertassek. Dynamics of Multibody Systems. Springer-Verlag, Berlin Heidelberg New York, 1988.
W. Rulka. Effiziente Simulation der Dynamik mechatronischer Systeme für industrielle Anwendungen. PhD thesis, Vienna University of Technology, Department of Mechanical Engineering, 1998.
W. Schiehlen. Multibody system dynamics: roots and perspectives. Multibody System Dynamics, 1:149–188, 1997.
W. Schiehlen and P. Eberhard. Multibody systems and applied dynamics. — Published in this volume, 2008.
R. Schwertassek and O. Wallrapp. Dynamik flexibler Mehrkörpersysteme. Vieweg, 1999.
A.A. Shabana. Dynamics of Multibody Systems. Cambridge University Press, Cambridge, 2nd edition, 1998.
A.A. Shabana. Computational Dynamics. John Wiley & Sons, Inc., New York, 2nd edition, 2001.
B. Simeon. Numerische Simulation gekoppelter Systeme von partiellen und differential-algebraischen Gleichungen in der Mehrkörperdynamik. Fortschritt-Berichte VDI Reihe 20, Nr. 325. VDI-Verlag, Düsseldorf, 2000.
B. Simeon, C. Führer, and P. Rentrop. Differential-algebraic equations in vehicle system dynamics. Surveys on Mathematics for Industry, 1:1–37, 1991.
S. Skelboe and P.U. Andersen. Stability properties of backward Euler multirate formulas. SIAM J. Sci. Stat. Comp., 10:1000–1009, 1989.
M.M. Tiller. Introduction to Physical Modeling with Modelica. Kluwer Academic Publishers, Boston Dordrecht London, 2001.
W. Trautenberg. Bidirektionale Kopplung zwischen CAD und Mehrkörpersimulationssystemen. PhD thesis, Munich University of Technology, Department of Mechanical Engineering, 1999.
F.C. Tseng and G.M. Hulbert. Network-distributed multibody dynamics simulation — gluing algorithm. In J.A.C. Ambrósio and W.O. Schiehlen, editors, Advances in Computational Multibody Dynamics, pages 521–540, IDMEC/IST Lisbon, Portugal, 1999.
O. Vaculín, M. Valášek, and W.R. Krüger. Overview of coupling of multibody and control engineering tools. Vehicle System Dynamics, 41:415–429, 2004.
M. Valášek. Modelling, simulation and control of mechatronical systems. — Published in this volume, 2008.
M. Valášek, Z. Šika, and O. Vaculín. Multibody formalism for real-time application using natural coordinates and modified state space. Multibody System Dynamics, 17:209–227, 2007.
A. Veitl. Integrierter Entwurf innovativer Stromabnehmer. Fortschritt-Berichte VDI Reihe 12, Nr. 449. VDI-Verlag, Düsseldorf, 2001.
A. Veitl, T. Gordon, A. van de Sand, M. Howell, M. Valášek, O. Vaculín, and P. Steinbauer. Methodologies for coupling simulation models and codes in mechatronic system analysis and design. In Proc. of the 16th IAVSD-Symposium on Dynamics of Vehicles on Roads and Tracks, pages 231–243. Supplement to Vehicle System Dynamics, Vol. 33, Swets & Zeitlinger, 1999.
R. von Schwerin. MultiBody System SIMulation — Numerical Methods, Algorithms, and Software, volume 7 of Lecture Notes in Computational Science and Engineering. Springer, Berlin Heidelberg, 1999.
O. Wallrapp. Linearized flexible multibody dynamics including geometric stiffening effects. Mechanics of Structures and Machines, 19:385–409, 1991.
O. Wallrapp. Standardization of flexible body modeling in multibody system codes, Part I: Definition of standard input data. Mechanics of Structures and Machines, 22:283–304, 1994.
R.A. Wehage and E.J. Haug. Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Design, 104:247–255, 1982.
Ch. Weidemann, L. Mauer, and M. Arnold. Improving the calculation speed for time domain integration of complex railway vehicles. In Poceedings of ACMD2006, The Third Asian Conference on Multibody Dynamics, August 1–4, 2006, Komaba, Tokyo, Japan, 2006.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 CISM, Udine
About this chapter
Cite this chapter
Arnold, M. (2008). Numerical methods for simulation in applied dynamics. In: Arnold, M., Schiehlen, W. (eds) Simulation Techniques for Applied Dynamics. CISM International Centre for Mechanical Sciences, vol 507. Springer, Vienna. https://doi.org/10.1007/978-3-211-89548-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-211-89548-1_5
Publisher Name: Springer, Vienna
Print ISBN: 978-3-211-89547-4
Online ISBN: 978-3-211-89548-1
eBook Packages: EngineeringEngineering (R0)