Similarity Relations and Independence Concepts

  • Frank Klawonn
  • Rudolf Kruse
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 504)


This paper addresses the definition of independence concepts in the context of similarity relations. After motivating the need for independence concepts basic ideas from similarity relations and their connections to fuzzy systems are reviewed. Three different independence notions are discussed and investigated in the framework of similarity relations. The results show that there are significant differences for independence concepts in a probabilistic setting and in the framework of similarityh relations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Adamek, H. Herrlich, and G.E. Strecker. Abstract and Concrete Categories: The Joy of Cats. Wiley, Chichester, 1990.zbMATHGoogle Scholar
  2. C. Borgelt. Prototype-based Classification and Clustering. PhD thesis, University of Magdeburg, 2005.Google Scholar
  3. C. Borgelt and R. Kruse. Graphical Models — Methods for Data Analysis and Mining. Wiley, Chichester, 2002.zbMATHGoogle Scholar
  4. B. Bouchon-Meunier, G. Coletti, and C. Marsala. Independence and possibilistic conditioning. Annals of Mathematics and Artificial Intelligence, 35:107–123, 2004.CrossRefMathSciNetGoogle Scholar
  5. R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter. Probabilistic Networks and Expert Systems. Springer, Berlin, 2003.Google Scholar
  6. D.R. Cox and N. Wermuth. Multivariate Dependencies: Models, Analysis and Interpretation. Chapman & Hall/CRC, Boca Raton, 1996.zbMATHGoogle Scholar
  7. M. De Cock and E.E. Kerre. Why fuzzy t-equivalence relations do not resolve the poincaré paradox, and related issues. Fuzzy Sets and Systems, 133:175–180, 2003.CrossRefMathSciNetGoogle Scholar
  8. G. De Cooman. Possibility theory III: possibilistic independence. International Journal of General Systems, 25:353–371, 1997.zbMATHCrossRefGoogle Scholar
  9. D. Dubois and H. Prade. Possibility theory, probability theory and multiplevalued logics: A clarification. Annals of Mathematics and Artificial Intelligence, 32:35–66, 2001.CrossRefMathSciNetGoogle Scholar
  10. D. Dubois and H. Prade. Similarity-based approximate reasoning. In J.M. Zurada, R.J. Marks II, and C.J. Robinson, editors, Computational Intelligence Imitating Life, pages 231–256. IEEE Press, New York, 1994.Google Scholar
  11. I. Gath and A.B. Geva. Unsupervised optimal fuzzy clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 11:773–781, 1989.CrossRefGoogle Scholar
  12. P.D. Grünwald. The Minimum Description Length Principle. MIT Press, Cambridge, MAssachusetts, 2007.Google Scholar
  13. D.E. Gustafson and W.C. Kessel. Fuzzy clustering with a fuzzy covariance matrix. In IEEE CDC, pages 761–766, San Diego, 1979.Google Scholar
  14. U. Höhle and L.N. Stout. Foundations of fuzzy sets. Fuzzy Sets and Systems, 40:257–296, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  15. F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis. Wiley, Chichester, 1999.zbMATHGoogle Scholar
  16. A. Keller and F. Klawonn. Fuzzy clustering with weighting of data variables. Uncertainty, Fuzziness and Knowledge-Based Systems, 8:735–746, 2000.zbMATHGoogle Scholar
  17. F. Klawonn. Should fuzzy equality and similarity satisfy transitivity? Fuzzy Sets and Systems, 133:175–180, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  18. F. Klawonn. Reducing the number of parameters of a fuzzy system using scaling functions. Soft Computing, 10:749–756, 2006.CrossRefGoogle Scholar
  19. F. Klawonn. Fuzzy sets and vague environments. Fuzzy Sets and Systems, 66:207–221, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  20. F. Klawonn and R. Kruse. Equality relations as basis for fuzzy control. Fuzzy Sets and Systems, 54:147–156, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  21. F. Klawonn and R. Kruse. Constructing a fuzzy controller from data. Fuzzy Sets and Systems, 85:177–193, 1997.CrossRefMathSciNetGoogle Scholar
  22. R.J. Nelsen. An Introduction to Copulas. Springer, Berlin, 1999.zbMATHGoogle Scholar
  23. A. O’Hagan and J. Forster. Kendall’s Advanced Theory of Statistics, Volume 2B: Bayesian Inference. Arnold, London, 2004.zbMATHGoogle Scholar
  24. E.H. Ruspini. On the semantics of fuzzy logic. Intern. Journ. of Approximate Reasoning, 5:45–88, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  25. G. Shafer. The game-theoretic framework for probability. In B. Bouchon-Meunier, J. Gutierrez-Rios, and L. Magdalena, editors, Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pages 3–10, Paris, 2006. Éditions E.D.K.Google Scholar
  26. G. Shafer. A Mathematical Theory of Evidence. Princeton University Prees, Princeton, 1976.zbMATHGoogle Scholar
  27. P. Smets and R. Kennes. The transferable belief model. Artificial Intelligence, 66:191–234, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  28. H. Thiele and N. Schmechel. The mutual defineability of fuzzy equivalence relations and fuzzy partitions. In Proc. Intern. Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium, pages 1383–1390, Yokohama, 1995.Google Scholar
  29. E. Trillas and L. Valverde. An inquiry into indistinguishability operators. In H.J. Skala, S. Termini, and E. Trillas, editors, Aspects of Vagueness, pages 231–256. Reidel, Dordrecht, 1984.Google Scholar
  30. B.B. Yaghlane, P. Smets, and K. Mellouli. Independence concepts for belief functions. In B. Bounchon-Meunier, J. Gutierrez-Rios, and L. Magdalena, editors, Technologies for constructing intelligent systems 2: tools, pages 45–58. Physica, Heidelberg, 2002.Google Scholar
  31. L.A. Zadeh. Similarity relations and fuzzy orderings. Information Sciences, 3:177–200, 1971.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2008

Authors and Affiliations

  • Frank Klawonn
    • 1
  • Rudolf Kruse
    • 2
  1. 1.Department of Computer ScienceUniversity of Applied SciencesWolfenbüttelGermany
  2. 2.Department of Computer ScienceOtto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations