Advertisement

Constraints and Preferences: Modelling Frameworks and Multi-agent settings

  • Francesca Rossi
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 504)

Abstract

Preferences are ubiquitous in real-life Moreover, preferences can be of many kinds: qualitative, quantitative, conditional, positive or negative, to name a few. Our ultimate goal is to define and study formalisms that can model problems with both constraints and many kind of preferences, possibly defined by several agents, and to develop tools to solve such problems efficiently. In this paper we briefly report on our recent work towards this goal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. L. Amgoud, J.F. Bonnenfon, H. Prade. An argumentation-based approach to multiple criteria decision. Proc. ECSQARU’05, 2005, pages 10–17.Google Scholar
  2. K.R. Apt, F. Rossi, and K. B. Venable. CP-nets and Nash equilibria. In Proc. of the Third International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS’ 05), pages 1–6.Google Scholar
  3. K.R. Apt, F. Rossi, and K. B. Venable. A comparison of the notions of optimality in soft constraints and graphical games. to appear in “Recent advances in Constraints”, selected papers from the 2007 ERCIM CSCLP workshop (Paris, June 2007), Springer LNAI, 2008.Google Scholar
  4. K.R. Apt, F. Rossi, and K.B. Venable. Comparing the notions of optimality in CP-nets, strategic games, and soft constraints. To appear in Annals of Mathematics and Artificial Intelligence, 2008.Google Scholar
  5. K. J. Arrow, A. K. Sen, and K. Suzumara. Handbook of Social Choice and Welfare. North-Holland, Elsevier, 2002.Google Scholar
  6. S. Benferhat, D. Dubois, S. Kaci, and H. Prade. Bipolar representation and fusion of preferences in the possibilistic logic framework. In KR 2002. Morgan Kaufmann, 2002.Google Scholar
  7. S. Benferhat, D. Dubois, S. Kaci, and H. Prade. Bipolar possibility theory in preference modeling: representation, fusion and optimal solutions. Information Fusion, 7(1):135–50, 2006.Google Scholar
  8. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and Optimization. Journal of the ACM, vol. 44, n. 2, pp. 201–236, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  9. C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research, 21:135–191, 2004.zbMATHMathSciNetGoogle Scholar
  10. C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. Preference-based constraint optimization with CP-nets. Computational Intelligence, vol. 20, pp. 137–157, 2004.CrossRefMathSciNetGoogle Scholar
  11. V. Conitzer and T. Sandholm. Vote Elicitation: Complexity and Strategy-Proofness. Proc. AAAI/IAAI 2002, pp. 392–397, 2002.Google Scholar
  12. R. Dechter. Constraint processing. Morgan Kaufmann, 2003.Google Scholar
  13. C. Domshlak, S. Prestwich, F. Rossi, K. B. Venable, T. Walsh. Hard and soft constraints for reasoning about qualitative conditional preferences. Journal of Heuristics, special issue on preferences, vol. 4–5, September 2006.Google Scholar
  14. C. Domshlak, F. Rossi, K. B. Venable, and T. Walsh. Reasoning about soft constraints and conditional preferences: complexity results and approximation techniques. Proc. IJCAI-03, 215–220. Morgan Kaufmann, 2003.Google Scholar
  15. D. Dubois and H. Fargier. On the qualitative comparison of sets of positive and negative affects. In ECSQARU’05, pages 305–316, 2005.Google Scholar
  16. D. Dubois and H. Fargier. Qualitative decision making with bipolar information. In KR’06, pages 175–186, 2006.Google Scholar
  17. D. Dubois, H. Fargier, H. Prade. The calculus of fuzzy restrictions as a basis for flexible constraint satisfaction. Proc. of the 2nd IEEE Inter. Conf. on Fuzzy Systems, San Francisco, CA, March 28–April 1st, 1993, Vol. II:1131–1136.Google Scholar
  18. D. Dubois, H. Fargier, H. Prade. Propagation and satisfaction of flexible constraints. In: Fuzzy Sets, Neural Networks and Soft Computing (R.R. Yager, L.A. Zadeh, eds.), Kluwer Academic Publ., 1994.Google Scholar
  19. D. Dubois, H. Fargier, H. Prade. Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty. Applied Intelligence, 6, 1996, 287–309.CrossRefGoogle Scholar
  20. D. Dubois, H. Fargier, H. Prade. Possibility theory in constraint satisfaction problems: handling priority, preference and uncertainty. Applied Intelligence, 6, 287–309, 1996.CrossRefGoogle Scholar
  21. D. Dubois, H. Prade. A review of fuzzy set aggregation connectives. Information Sciences, 36 (1–2), 85–121, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  22. D. Dubois, H. Prade. Possibility theory. Plenum Press, New York, 1988.zbMATHGoogle Scholar
  23. D. Dubois, H. Prade. Possibility theory: qualitative and quantitative aspects. In: P. Smets, Ed., Handbook on Defeasible Reasoning and Uncertainty Management Systems. Volume 1: Quantified Representation of Uncertainty and Imprecision. Kluwer, 169–226, 1998.Google Scholar
  24. D. Dubois, H. Prade. Qualitative possibility theory and its applications to constraint satisfaction and decision under uncertainty. International Journal of Intelligent Systems, 14, 45–61, 1999.zbMATHCrossRefGoogle Scholar
  25. D. Dubois, H. Prade. R. Sabbadin. Decision theoretic foundations of qualitative possibility theory. European Journal of Operational Research, 128, 459–478, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  26. A. Gibbard. Manipulation of Voting Schemes: A General Result. Econometrica, 1973, vol. 41, pp. 587–601.zbMATHCrossRefMathSciNetGoogle Scholar
  27. Souhila Kaci, Henri Prade. Relaxing Ceteris Paribus Preferences with Partially Ordered Priorities. proc. ECSQARU 2007: 660–671.Google Scholar
  28. J. S. Kelly. Arrow Impossibility Theorems. Academic Press, 1978.Google Scholar
  29. L. Khatib, P. Morris, R. Morris, F. Rossi, A. Sperduti, K. Brent Venable. Solving and learning a tractable class of soft temporal problems: theoretical and experimental results. AI Communications, special issue on Constraint Programming for Planning and Scheduling, vol. 20 n.3, 2007.Google Scholar
  30. K. Konczak and J. Lang. Voting procedures with incomplete preferences. Proc. IJCAI-05 Multidisciplinary Workshop on Advances in Preference Handling, 2005.Google Scholar
  31. Ch. Labreuche, M. Grabish. Generalized Choquet-like aggregation functions for handling bipolar scales. European Journal of Operational Research, 172(3), 931–955, 2006.zbMATHCrossRefMathSciNetGoogle Scholar
  32. J. Lang, M.S. Pini, F. Rossi, K. Venable, T. Walsh. Winner determination in sequential majority voting. Proc. IJCAI 2007, Hyderabad, India, January 2007.Google Scholar
  33. P. Meseguer F. Rossi and T. Schiex. Soft constraints. In T. Walsh F. Rossi, P. Van Beek, editor, Handbook of Constraint programming, pages 281–328. Elsevier, 2006.Google Scholar
  34. M. S. Pini, F. Rossi, K. B. Venable. Possibility, theory for reasoning about uncertain soft constraints. Proc. ECSQARU 2005, Barcelona, July 2005, Springer-Verlag LNAI 3571.Google Scholar
  35. Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, Stefano Bistarelli. Bipolar preference problems. Proc. ECAI 2006 (poster paper), Riva del Garda, August 28–September 1, 2006.Google Scholar
  36. M. S. Pini, F. Rossi, K. B. Venable, T. Walsh. Strategic voting when aggregating partially ordered preferences. Proc. AAMAS 2006 (5th international joint conference on autonomous agents and multiagent systems), Hakodate, Japan, May 8–12, 2006.Google Scholar
  37. M.S. Pini, F. Rossi, K. Venable, T. Walsh. Incompleteness and incomparability in preference aggregation. Proc. IJCAI 2007, Hyderabad, India, January 2007.Google Scholar
  38. M.S. Pini, F. Rossi, K. Venable, T. Walsh. Aggregating partially ordered preferences. To appear in Journal of Logic and Computation, Oxford University Press, special Issue on belief revision, belief merging and social choice, D. Gabbay G. Pigozzi, O. Rodrigues eds., 2008.Google Scholar
  39. S. Prestwich, F. Rossi, K. B. Venable, T. Walsh. Constraint-based Preferential Optimization. Proc. AAAI 2005, Morgan Kaufmann, 2005.Google Scholar
  40. F. Rossi. Preference Reasoning. Proc. CP 2005 (invited paper), Sitges, Spain, October 2005.Google Scholar
  41. F. Rossi and A. Sperduti. Acquiring both constraint and solution preferences in interactive constraint systems. Constraints, vol 9, n.4, 2004, Kluwer.Google Scholar
  42. F. Rossi, T. Walsh, P. Van Beek, editors. Handbook of Constraint programming, Elsevier, 2006.Google Scholar
  43. F. Rossi, K. B. Venable, and T. Walsh. mCP Nets: Representing and Reasoning with Preferences of Multiple Agents. Proc. AAAI 2004, AAAI Press, 2004.Google Scholar
  44. F. Rossi, M. S. Pini, K. B. Venable, and T. Walsh. Aggregating preferences cannot be fair. Proc. TARK X, Singapore, June 2005, ACM Digital Library.Google Scholar
  45. F. Rossi, K. B. Venable, N. Yorke-Smith. Controllability of Soft Temporal Constraint Problems. Proc. CP 2004, Toronto, Springer LNCS 3258, 2004.Google Scholar
  46. F. Rossi, K. B. Venable and N. Yorke-Smith. Uncertainty in soft temporal constraint problems: a general framework and controllability algorithms for the fuzzy case, Journal of AI Research, volume 27, pages 617–674, 2006.zbMATHGoogle Scholar

Copyright information

© CISM, Udine 2008

Authors and Affiliations

  • Francesca Rossi
    • 1
  1. 1.Department of Pure and Applied MathematicsUniversity of PadovaPadovaItaly

Personalised recommendations