An introduction to Λ-convergence methods for thin structures

  • Danilo Percivale
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 503)


In these lectures an essential introduction to lower semicontinuity and Λ-convergence basic facts is given together with simple applications to thin structures in elasticity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press Oxford, (2000).zbMATHGoogle Scholar
  2. [2]
    L. Ambrosio, A. Coscia & G. Dal Maso, Fine properties of functions with bounded deformation, Arch.Rat. Mech.Anal., 139,3(1997), 201–238.zbMATHCrossRefGoogle Scholar
  3. [3]
    L. Ambrosio & A. Braides, Energies in SBV and variational models in fracture mechanics, Homogeneization and Appl. to Material sciences, (Nice, 1995), 9GAKUTO Int.Ser.Math.Sci Appl.Google Scholar
  4. [4]
    G. Anzellotti, S. Baldo & D. Percivale, Dimension reduction in variational problems, asymptotic development in Λ-convergence and thin structures in elasticity, Asymptotic Anal., 9,(1994) 61–100.zbMATHMathSciNetGoogle Scholar
  5. [5]
    C. Baiocchi, G. Buttazzo, F. Gastaldi & F. Tomarelli, General existence theorems for unilateral problems in continuum mechanics, Arch.Rat.Mech. Anal., 100, 2(1988), 149–189.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    G.I. Barenblatt The formation of equilibrium cracks during brittle fracture, general ideas and hypotheses. Axially symmetric cracks, Appl.Math. Mech. (PMM) 23,(1959), 622–636.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    A. Braides, G. Dal Maso & A. Garroni, Variational formulation of soft-ening phenomena in fracture mechanics: the one-dimensional case, Arch.Rat. Mech. Anal., 146,(1999) 23–58.zbMATHCrossRefGoogle Scholar
  8. [8]
    A. Braides & I. Fonseca, Brittle thin films, Appl.Math.Opt. 44(2001) 3, 299–323.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Braides, I. Fonseca & G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ.Math.J 49(2000) 4, 1367–1404.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    M. Carriero, A. Leaci & F. Tomarelli, Plastic free discontinuities and special bounded hessian, C. R. Acad. Sci. Paris, 314(1992), 595–600.zbMATHMathSciNetGoogle Scholar
  11. [11]
    M. Carriero, A. Leaci & F. Tomarelli, Special Bounded Hessian and elastic-plastic plate, Rend. Accad. Naz. delle Scienze (dei XL), (109)XV (1992), 223–258.MathSciNetGoogle Scholar
  12. [12]
    M. Carriero, A. Leaci & F. Tomarelli, Strong solution for an Elastic Plastic Plate, Calc. Var., 2(1994), 219–240.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    M. Carriero, A. Leaci, F. Tomarelli, Second Order Variational Problems with Free Discontinuity and Free Gradient Discontinuity, in: Calculus of Variations: Topics from the Mathematical Heritage of Ennio De Giorgi, D. Pallara (Ed.), Quaderni di Matematica, 14, Series edited by Dipartimento di Matematica, Seconda Università di Napoli, (2004), 135–186.Google Scholar
  14. [14]
    V. Casarino, D. Percivale, A variational model for non linear elastic plates, J. Convex Anal., 3(1996) 221–243.zbMATHMathSciNetGoogle Scholar
  15. [15]
    P.G. Ciarlet, Mathematical Elasticity, vol II: Theory of Plates, Studies in Math. and its Appl., North-Holland, (1997).Google Scholar
  16. [16]
    F. Colombo, F. Tomarelli, Boundary value problems and obstacle problem for elastic bodies with free cracks, in: Calculus of Variations: Topics from the Mathematical Heritage of Ennio De Giorgi, D. Pallara (ed.), Quaderni di Matematica, Series edited by Dipartimento di Matematica, Seconda Universita’ di Napoli, (2004), 221–243.Google Scholar
  17. [17]
    G. Dal Maso An Introduction to Λ — convergence. Birkhauser (1993)Google Scholar
  18. [18]
    E. De Giorgi Free discontinuity problems in calculus of variations, Frontiers in Pure & Applied Mathematics, R. Dautray ed., North-Holland, Amsterdam 1991, 55–61.Google Scholar
  19. [19]
    E. De Giorgi & L. Ambrosio, Un nuovo tipo di funzionale del Calcolo delle Variazioni, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., 82(1988), 199–210.zbMATHMathSciNetGoogle Scholar
  20. [20]
    G. Del Piero, One-dimensional ductile-brittle transition, yielding, and structured deformations Variations of domain and free-boundary problems in solid mechanics (Paris 1997), 203–210, Solid Mech. Appl., 66, Kluwer Acad. Publ., Dordrecht (1999)Google Scholar
  21. [21]
    G.Del Piero & D.R. Owen, Structured deformations of continua, Arch.Rat.Mech. Anal., 1241993, 99–155.Google Scholar
  22. [22]
    G. Del Piero & L. Truskinovsky, A one-dimensional model for localized and distributed failure, J.Phys., IV France, pr. 8, (1998), 95–102.Google Scholar
  23. [23]
    G. Francfort & J.J. Marigo, Revisiting brittle fracture as an energy minimization problem, J.Mech.Phys. Solids, 46(1998), 1319–1342.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    A.A. Griffith, The phenomenon of rupture and flow in solids, Phyl.Trans. Roy.Soc. A,221, (1920), 163–198.CrossRefGoogle Scholar
  25. [25]
    G. Kirchhoff, Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J.Reine Angew.Math40(1850), 51–88zbMATHGoogle Scholar
  26. [26]
    D. Percivale, Perfectly Plastic Plates: a variational definition J.Reine Angew.Math.411(1990), 39–50.MathSciNetGoogle Scholar
  27. [27]
    D. Percivale, Thin elastic beams: St.Venant’s problem, Asympt. Anal.,20,(1999),39–60.zbMATHMathSciNetGoogle Scholar
  28. [28]
    D. Percivale & F. Tomarelli Scaled Korn-Poincaré inequality in BD and a model of elastic plastic cantilever, Asymptotic Analysis,23, (2000) 291–311.zbMATHMathSciNetGoogle Scholar
  29. [29]
    D. Percivale & F. Tomarelli From SBD to SBH: the elastic plastic plate, Interfaces and Free Boundaries 4(2002), 137–165.zbMATHMathSciNetGoogle Scholar
  30. [30]
    D. Percivale & F. Tomarelli From Special Bonded Deformation to Special Bounded Hessian: the elastic plastic beam, Quad.551/P, Dip.Mat. Politecnico Milano (2003), 1–41. to appear on M 3 AS Google Scholar
  31. [31]
    G. Savarè & F. Tomarelli, Superposition and Chain Rule for Bounded Hessian Functions, Advances in Math.140(1998), 237–281.zbMATHCrossRefGoogle Scholar
  32. [32]
    M.A. Save & C.E. Massonet, Plastic analysis and design of plates, shells and disks, North-Holland Ser. Appl.Math Mech.(1972).Google Scholar
  33. [33]
    R. Temam, Problèmes Mathematiques en Plasticité, Gauthier-Vllars, (1983), Paris.Google Scholar
  34. [34]
    R. Temam & G. Strang Functions of bounded deformation, Arch.Rat.Mech. Anal.,75 (1980), 7–21.zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    L. Truskinowsky Fracture as a phase transition, in R.C. Batra, M.F. Beatty, (eds), Contemporary Research in the Mechanics and Mathematics of Materials ( J.L.Ericksen), C.I.M.N.E., Barcelona, (1996), 322–332Google Scholar
  36. [36]
    P. Villaggio: Qualitative Methods in Elasticity, Nordhoff (1977).Google Scholar

Copyright information

© CISM, Udine 2008

Authors and Affiliations

  • Danilo Percivale

There are no affiliations available

Personalised recommendations