Advertisement

Introduction to “Classic” Chronic Myeloproliferative Disorders (CMPDs) — Molecular and Cellular Biology

  • Lisa Pleyer
  • Richard Greil

Abstract

Philadelphiachromosome-negative chronic myeloproliferative disorders (CMPDs) include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF), subsumed as the “classic CMPDs”, as well as the following disorders: chronic neutrophilic leukemia (CNL), chronic eosinophilic leukemia (CEL) and the hypereosinophilic syndrome (HES), clonal basophilic disorders and unclassifiable CMPDs. The diagnosis and management of CMPDs has been difficult in the past due to several reasons. (1) Significant phenotypic mimicry exists among classic CMPDs on the one hand, as well as between classic CMPDs and non-clonal benign and malignant hematopoietic disorders on the other hand. (2) The initial lack of clonal molecular diagnostic markers in the pre-JAK2 era, as well as the previous lack of clear-cut diagnostic criteria and an adequate classification system, has often led to misclassification of chronic myeloproliferative disorders.

Keywords

Acute Myeloid Leukemia Polycythemia Vera Essential Thrombocythemia Myeloproliferative Disorder JAK2 V617F 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Moliterno AR, Hankins WD, Spivak JL (1998) Impaired expression of the thrombopoietin receptor by platelets from atients with polycythemia vera. N Engl J Med 338: 572–580CrossRefPubMedGoogle Scholar
  2. [2]
    Adamson JW, Fialkow PJ, Murphy S, Prchal JF, Steinmann L (1976) Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med 295: 913–916PubMedGoogle Scholar
  3. [3]
    Fialkow PJ, Faguet GB, Jacobson RJ, Vaidya K, Murphy S (1981) Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 58: 916–919PubMedGoogle Scholar
  4. [4]
    Prchal JF, Axelrad AA (1974) Letter: bone-marrow responses in polycythemia vera. N Engl J Med 290: 1382PubMedGoogle Scholar
  5. [5]
    Jelinek J, Oki Y, Gharibyan V et al. (2005) JAK2 mutation 1849G>T is rare in acute leukaemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukaemia. Blood 106: 3370–3373CrossRefPubMedGoogle Scholar
  6. [6]
    Ingram W, Lea NC, Cervera J et al. (2006) The JAK2 V617F mutation identifies a subgroup of MDS patients with isolated deletion 5q and a proliferative bone marrow. Leukaemia 20: 1319–1321CrossRefGoogle Scholar
  7. [7]
    Gattermann N, Billiet J, Kronenwett R et al. (2007) High frequency of the JAK2 V617F mutation in patients with thrombocytosis (platelet count>600×109/L) and ringed side-roblasts more than 15% considered as MDS/MPD, unclassifiable. Blood 109: 1334–1335CrossRefPubMedGoogle Scholar
  8. [8]
    Zipperer E, Wulfert M, Germing U, Haas R, Gattermann N (2008) MPL 515 and JAK2 mutation analysis in MDS presenting with a platelet count of more than 500×10(9)/l. Ann Hematol 87: 413–415CrossRefPubMedGoogle Scholar
  9. [9]
    Michiels JJ, Berneman Z, Van Bockstaele D, van der PM, De Raeve H, Schroyens W (2006) Clinical and laboratory features, pathobiology of platelet-mediated thrombosis and bleeding complications, and the molecular etiology of essential thrombocythemia and polycythemia vera: therapeutic implications. Semin Thromb Hemost 32: 174–207CrossRefPubMedGoogle Scholar
  10. [10]
    Levine RL, Pardanani A, Tefferi A, Gilliland DG (2007) Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer 7: 673–683CrossRefPubMedGoogle Scholar
  11. [11]
    Levine RL, Belisle C, Wadleigh M et al. (2006) X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood 107: 4139–4141CrossRefPubMedGoogle Scholar
  12. [12]
    Lasho TL, Mesa R, Gilliland DG, Tefferi A (2005) Mutation studies in CD3+, CD19+ and CD34+ cell fractions in myeloproliferative disorders with homozygous JAK2(V617F) in granulocytes. Br J Haematol 130: 797–799CrossRefPubMedGoogle Scholar
  13. [13]
    Delhommeau F, Dupont S, Tonetti C et al. (2007) Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 109: 71–77CrossRefPubMedGoogle Scholar
  14. [14]
    Ishii T, Bruno E, Hoffman R, Xu M (2006) Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood 108: 3128–3134CrossRefPubMedGoogle Scholar
  15. [15]
    Scott LM, Scott MA, Campbell PJ, Green AR (2006) Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 108: 2435–2437CrossRefPubMedGoogle Scholar
  16. [16]
    Antonioli E, Guglielmelli P, Pancrazzi A et al. (2005) Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukaemia 19: 1847–1849CrossRefGoogle Scholar
  17. [17]
    Kiladjian JJ, Elkassar N, Cassinat B et al. (2006) Essential thrombocythemias without V617F JAK2 mutation are clonal hematopoietic stem cell disorders. Leukaemia 20: 1181–1183CrossRefGoogle Scholar
  18. [18]
    Bellanne-Chantelot C, Chaumarel I, Labopin M et al. (2006) Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood 108: 346–352CrossRefPubMedGoogle Scholar
  19. [19]
    Xu X, Zhang Q, Luo J et al. (2007) JAK2(V617F): prevalence in a large Chinese hospital population. Blood 109: 339–342CrossRefPubMedGoogle Scholar
  20. [20]
    Scott LM, Campbell PJ, Baxter EJ et al. (2005) The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. Blood 106: 2920–2921CrossRefPubMedGoogle Scholar
  21. [21]
    Patel RK, Lea NC, Heneghan MA et al. (2006) Prevalence of the activating JAK2 tyrosine kinase mutation V617F in the Budd-Chiari syndrome. Gastroenterology 130: 2031–2038CrossRefPubMedGoogle Scholar
  22. [22]
    Campbell PJ, Green AR (2006) The myeloproliferative disorders. N Engl J Med 355: 2452–2466CrossRefPubMedGoogle Scholar
  23. [23]
    Kralovics R, Teo SS, Li S et al. (2006) Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 108: 1377–1380CrossRefPubMedGoogle Scholar
  24. [24]
    Campbell PJ, Baxter EJ, Beer PA et al. (2006) Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 108: 3548–3555CrossRefPubMedGoogle Scholar
  25. [25]
    Bumm TG, Elsea C, Corbin AS et al. (2006) Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res 66: 11156–11165CrossRefPubMedGoogle Scholar
  26. [26]
    Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL (2006) JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108: 1652–1660CrossRefPubMedGoogle Scholar
  27. [27]
    Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG (2006) Expression of JAK2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107: 4274–4281CrossRefPubMedGoogle Scholar
  28. [28]
    Zaleskas VM, Krause DS, Lazarides K et al. (2006) Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS. ONE. 1: e18CrossRefGoogle Scholar
  29. [29]
    Tiedt R, Hao-Shen H, Sobas MA et al. (2008) Ratio of mutant JAK2-V617F to wild-type JAK2 determines the MPD phenotypes in transgenic mice. Blood 111: 3931–3940CrossRefPubMedGoogle Scholar
  30. [30]
    Moliterno AR, Williams DM, Rogers O, Spivak JL (2006) Molecular mimicry in the chronic myeloproliferative disorders: reciprocity between quantitative JAK2 V617F and Mpl expression. Blood 108: 3913–3915CrossRefPubMedGoogle Scholar
  31. [31]
    Baxter EJ, Scott LM, Campbell PJ et al. (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365: 1054–1061PubMedGoogle Scholar
  32. [32]
    James C, Ugo V, Le Couedic JP et al. (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434: 1144–1148CrossRefPubMedGoogle Scholar
  33. [33]
    Levine RL, Wadleigh M, Cools J et al. (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7: 387–397CrossRefPubMedGoogle Scholar
  34. [34]
    Kralovics R, Passamonti F, Buser AS et al. (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352: 1779–1790CrossRefPubMedGoogle Scholar
  35. [35]
    Pemmaraju N, Moliterno AR, Williams DM, Rogers O, Spivak JL (2007) The quantitative JAK2 V617F neutrophil allele burden does not correlate with thrombotic risk in essential thrombocytosis. Leukaemia 21: 2210–2212CrossRefGoogle Scholar
  36. [36]
    Holt D, Dreimanis M, Pfeiffer M, Firgaira F, Morley A, Turner D (1999) Interindividual variation in mitotic recombination. Am J Hum Genet 65: 1423–1427CrossRefPubMedGoogle Scholar
  37. [37]
    Passamonti F, Rumi E, Pietra D et al. (2006) Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood 107: 3676–3682CrossRefPubMedGoogle Scholar
  38. [38]
    Thiele J, Kvasnicka HM, Diehl V (2005) Bone marrow CD34+ progenitor cells in Philadelphia chromosome-negative chronic myeloproliferative disorders — a clinicopathological study on 575 patients. Leuk Lymphoma 46: 709–715CrossRefPubMedGoogle Scholar
  39. [39]
    Xing S, Ho WT, Zhao W et al. (2008) Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood 110: 5109–5117CrossRefGoogle Scholar
  40. [40]
    Plo I, Nakatake M, Malivert L et al. (2008) JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood 112(4): 1402–1412CrossRefPubMedGoogle Scholar
  41. [41]
    Saharinen P, Takaluoma K, Silvennoinen O (2000) Regulation of the JAK2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol 20: 3387–3395CrossRefPubMedGoogle Scholar
  42. [42]
    Royer Y, Staerk J, Costuleanu M, Courtoy PJ, Constantinescu SN (2005) Janus kinases affect thrombopoietin receptor cell surface localization and stability. J Biol Chem 280: 27251–27261CrossRefPubMedGoogle Scholar
  43. [43]
    Lu X, Levine R, Tong W et al. (2005) Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA 102: 18962–18967CrossRefPubMedGoogle Scholar
  44. [44]
    Huang LJ, Constantinescu SN, Lodish HF (2001) The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell 8: 1327–1338CrossRefPubMedGoogle Scholar
  45. [45]
    Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernandez-Luna JL (1998) Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med 338: 564–571CrossRefPubMedGoogle Scholar
  46. [46]
    Labbaye C, Valtieri M, Barberi T et al. (1995) Differential expression and functional role of GATA-2, NF-E2, and GATA-1 in normal adult hematopoiesis. J Clin Invest 95: 2346–2358CrossRefPubMedGoogle Scholar
  47. [47]
    Goerttler PS, Kreutz C, Donauer J et al. (2005) Gene expression profiling in polycythaemia vera: overexpression of transcription factor NF-E2. Br J Haematol 129: 138–150CrossRefPubMedGoogle Scholar
  48. [48]
    Zeuner A, Pedini F, Signore M et al. (2006) Increased death receptor resistance and FLIP short expression in polycythemia vera erythroid precursor cells. Blood 107: 3495–3502CrossRefPubMedGoogle Scholar
  49. [49]
    Greil R, Anether G, Johrer K, Tinhofer I (2003) Tuning the rheostat of the myelopoietic system via Fas and TRAIL. Crit Rev Immunol 23: 301–322CrossRefPubMedGoogle Scholar
  50. [50]
    Greil R, Anether G, Johrer K, Tinhofer I (2003) Tracking death dealing by Fas and TRAIL in lymphatic neoplastic disorders: pathways, targets, and therapeutic tools. J Leukoc Biol 74: 311–330CrossRefPubMedGoogle Scholar
  51. [51]
    Walz C, Crowley BJ, Hudon HE et al. (2006) Activated JAK2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem 281: 18177–18183CrossRefPubMedGoogle Scholar
  52. [52]
    Teofili L, Martini M, Cenci T et al. (2007) Different STAT-3 and STAT-5 phosphorylation discriminates among Ph-negative chronic myeloproliferative diseases and is independent of the V617F JAK-2 mutation. Blood 110: 354–359CrossRefPubMedGoogle Scholar
  53. [53]
    Heller PG, Lev PR, Salim JP et al. (2006) JAK2V617F mutation in platelets from essential thrombocythemia patients: correlation with clinical features and analysis of STAT5 phosphorylation status. Eur J Haematol 77: 210–216CrossRefPubMedGoogle Scholar
  54. [54]
    Kirito K, Osawa M, Morita H et al. (2002) A functional role of Stat3 in in vivo megakaryopoiesis. Blood 99: 3220–3227CrossRefPubMedGoogle Scholar
  55. [55]
    Teofili L, Martini M, Luongo M et al. (2002) Overexpression of the polycythemia rubra vera-1 gene in essential thrombocythemia. J Clin Oncol 20: 4249–4254CrossRefPubMedGoogle Scholar
  56. [56]
    Vannucchi AM, Guglielmelli P, Antonioli E et al. (2006) Inconsistencies in the association between the JAK2(V617F) mutation and PRV-1 over-expression among the chronic myeloproliferative diseases. Br J Haematol 132: 652–654CrossRefPubMedGoogle Scholar
  57. [57]
    Pardanani AD, Levine RL, Lasho T et al. (2006) MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108: 3472–3476CrossRefPubMedGoogle Scholar
  58. [58]
    Mercher T, Wernig G, Moore SA et al. (2006) JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukaemia in a murine bone marrow transplantation model. Blood 108: 2770–2779CrossRefPubMedGoogle Scholar
  59. [59]
    Peeters P, Raynaud SD, Cools J et al. (1997) Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukaemia. Blood 90: 2535–2540PubMedGoogle Scholar
  60. [60]
    Bousquet M, Quelen C, De MV et al. (2005) The t(8;9)(p22; p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 24: 7248–7252CrossRefPubMedGoogle Scholar
  61. [61]
    Reiter A, Walz C, Watmore A et al. (2005) The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukaemia that fuses PCM1 to JAK2. Cancer Res 65: 2662–2667CrossRefPubMedGoogle Scholar
  62. [62]
    Bousquet M, Brousset P (2006) Myeloproliferative disorders carrying the t(8;9) (PCM1-JAK2) translocation. Hum Pathol 37: 500–502CrossRefPubMedGoogle Scholar
  63. [63]
    Griesinger F, Hennig H, Hillmer F et al. (2005) A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukaemia. Genes Chromosomes. Cancer 44: 329–333Google Scholar
  64. [64]
    Heiss S, Erdel M, Gunsilius E, Nachbaur D, Tzankov A (2005) Myelodysplastic/myeloproliferative disease with erythropoietic hyperplasia (erythroid preleukaemia) and the unique translocation (8;9)(p23;p24): first description of a case. Hum Pathol 36: 1148–1151CrossRefPubMedGoogle Scholar
  65. [65]
    Murati A, Gelsi-Boyer V, Adelaide J et al. (2005) PCM1-JAK2 fusion in myeloproliferative disorders and acute erythroid leukaemia with t(8;9) translocation. Leukaemia 19: 1692–1696CrossRefGoogle Scholar
  66. [66]
    Pardanani A, Fridley BL, Lasho TL, Gilliland DG, Tefferi A (2008) Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood 111: 2785–2789CrossRefPubMedGoogle Scholar
  67. [67]
    Jost E, do ON, Dahl E et al. (2007) Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukaemia 21: 505–510CrossRefGoogle Scholar
  68. [68]
    Capello D, Deambrogi C, Rossi D et al. (2008) Epigenetic inactivation of suppressors of cytokine signalling in Philadelphia-negative chronic myeloproliferative disorders. Br J Haematol 141(4): 504–511CrossRefPubMedGoogle Scholar
  69. [69]
    Bock O, Hussein K, Brakensiek K et al. (2007) The suppressor of cytokine signalling-1 (SOCS-1) gene is overexpressed in Philadelphia chromosome negative chronic myeloproliferative disorders. Leuk Res 31: 799–803CrossRefPubMedGoogle Scholar
  70. [70]
    Usenko T, Eskinazi D, Correa PN, Amato D, Ben David Y, Axelrad AA (2007) Overexpression of SOCS-2 and SOCS-3 genes reverses erythroid overgrowth and IGF-I hypersensitivity of primary polycythemia vera (PV) cells. Leuk Lymphoma 48: 134–146CrossRefPubMedGoogle Scholar
  71. [71]
    Hookham MB, Elliott J, Suessmuth Y et al. (2007) The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3. Blood 109: 4924–4929CrossRefPubMedGoogle Scholar
  72. [72]
    Pardanani A (2008) JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukaemia 22: 23–30CrossRefGoogle Scholar
  73. [73]
    Russell SM, Tayebi N, Nakajima H et al. (1995) Mutation of JAK3 in a patient with SCID: essential role of JAK3 in lymphoid development. Science 270: 797–800CrossRefPubMedGoogle Scholar
  74. [74]
    Macchi P, Villa A, Giliani S et al. (1995) Mutations of JAK3-gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377: 65–68CrossRefPubMedGoogle Scholar
  75. [75]
    Pardanani A, Hood J, Lasho T et al. (2007) TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukaemia 21: 1658–1668CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2010

Authors and Affiliations

  • Lisa Pleyer
    • 1
  • Richard Greil
    • 1
  1. 1.Universitätsklinik für Innere Medizin IIIParacelsus Medizinische PrivatuniversitätSalzburgAustria

Personalised recommendations