Hydrodynamics and Cavitation of Pumps

  • Christopher E. Brennen


This paper summarizes a set of lectures given on the hydrodynamics and cavitation of pumps presented at CISM in July, 2005. The lectures are based on my book entitled “Hydrodynamics of Pumps” (Brennen 1994) published jointly by Concepts ETI and Oxford University Press and available on the internet at http://caltechbook.library.caltech.edu/22/01/pumps.htm. The author is very grateful to Concepts ETI for permission to utilize large fractions of that book in this summary of the lectures. Readers who wish to explore the subject matter in more detail are encouraged to consult the original book.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, H.N. (1969). Hydroelasticity: a review of hydrofoil flutter. Appl. Mech. Rev., 22, No. 2, 115–121.Google Scholar
  2. Acosta, A.J. (1955). A note on partial cavitation of flat plate hydrofoils. Calif. Inst. of Tech. Hydro. Lab. Rep. E-19.9. Google Scholar
  3. Acosta, A.J. (1958). An experimental study of cavitating inducers. Proc. Second ONR Symp. on Naval Hydrodyn., ONR/ACR-38, 533–557.Google Scholar
  4. Acosta, A.J. (1973). Hydrofoils and hydrofoil craft. Ann. Rev. Fluid Mech., 5, 161–184.Google Scholar
  5. Acosta, A.J. and Bowerman, R.D. (1957). An experimental study of centrifugal pump impellers. Trans. ASME, 79, 1821–1839.Google Scholar
  6. Acosta, A.J. and DeLong, R.K. (1971). Experimental investigation of non-steady forces on hydrofoils oscillating in heave. Proc. IUTAM Symp. on non-steady flow of water at high speeds, Leningrad, USSR, 95–104.Google Scholar
  7. Acosta, A.J. and Hollander, A. (1959). Remarks on cavitation in turbomachines. Calif. Inst. of Tech. Rep. E-79.3. Google Scholar
  8. Acosta, A.J. and Parkin, B.R. (1975). Cavitation inception—a selective review. J. Ship Res., 19, No. 4, 193–205.Google Scholar
  9. Adamczyk, J.J. (1975). The passage of a distorted velocity field through a cascade of airfoils. Proc. Conf. on Unsteady Phenomena in Turbomachinery, AGARD Conf. Proc. No. 177.Google Scholar
  10. Amies, G. and Greene, B. (1977). Aircraft hydraulic systems dynamic analysis. Volume IV. Frequency response (HSFR). Wright-Patterson Air Force Base Technical Report AFAPL-TR-76-43, IV.Google Scholar
  11. Anderson, D.A., Blade, R.J. and Stevens, W. (1971). Response of a radial-bladed centrifugal pump to sinusoidal disturbances for non-cavitating flow. NASA TN D-6556.Google Scholar
  12. Anderson, H.H. (undated) Centrifugal pumps. The Trade and Technical Press Ltd., Crown House, Morden, England.Google Scholar
  13. Anderson, H.H. (1955). Modern developments in the use of large single-entry centrifugal pumps. Proc. Inst. Mech. Eng., 169, 141–161.Google Scholar
  14. Arakeri, V.H. (1979). Cavitation inception. Proc. Indian Acad. Sci., C2, Part 2, 149–177.Google Scholar
  15. Arndt, R.E.A. (1981). Cavitation in fluid machinery and hydraulic structures. Ann. Rev. Fluid Mech., 13, 273–328.Google Scholar
  16. Badowski, H.R. (1969). An explanation for instability in cavitating inducers. Proc. 1969 ASME Cavitation Forum, 38–40.Google Scholar
  17. Badowski, H.R. (1970). Inducers for centrifugal pumps. Worthington Canada, Ltd., Internal Report.Google Scholar
  18. Balje, O.E. (1981). Turbomachines. A guide to design, selection and theory. John Wiley and Sons, New York.Google Scholar
  19. Batchelor, G.K. (1967). An introduction to fluid dynamics. Cambridge Univ. Press.Google Scholar
  20. Biesheuvel, A. and van Wijngaarden, L. (1984). Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J. Fluid Mech., 148, 301–318.MATHGoogle Scholar
  21. Birkhoff, G. and Zarantonello, E.M. (1957). Jets, wakes and cavities. Academic Press, NY.MATHGoogle Scholar
  22. Braisted, D.M. (1979). Cavitation induced instabilities associated with turbomachines. Ph.D. Thesis, Calif. Inst. of Tech. Google Scholar
  23. Braisted, D.M. and Brennen, C.E. (1980). Auto-oscillation of cavitating inducers. In Polyphase Flow and Transport Technology, (ed: R.A. Bajura), ASME Publ., New York, 157–166.Google Scholar
  24. Brennen, C.E. (1973). The dynamic behavior and compliance of a stream of cavitating bubbles. ASME J. Fluids Eng., 95, 533–542.Google Scholar
  25. Brennen, C.E. (1978). Bubbly flow model for the dynamic characteristics of cavitating pumps. J. Fluid Mech., 89, Part 2, 223–240.Google Scholar
  26. Brennen, C.E. (1994). Hydrodynamics of pumps. Concepts ETI and Oxford Univ. Press.Google Scholar
  27. Brennen, C.E. (1995). Cavitation and bubble dynamics. Oxford Univ. Press.Google Scholar
  28. Brennen, C.E. and Acosta, A.J. (1973). Theoretical, quasistatic analyses of cavitation compliance in turbopumps. J. of Spacecraft and Rockets, 10, No.3, 175–180.Google Scholar
  29. Brennen, C.E. and Acosta, A.J. (1975). The dynamic performance of cavitating turbopumps. Proc. Fifth Conference on Fluid Machinery, Akademiai Kiado, Budapest, Hungary, 121–136.Google Scholar
  30. Brennen, C.E. and Acosta, A.J. (1976). The dynamic transfer function for a cavitating inducer. ASME J. Fluids Eng., 98, 182–191.Google Scholar
  31. Brennen, C.E. and Braisted, D.M. (1980). Stability of hydraulic systems with focus on cavitating pumps. Proc. 10th Symp. of IAHR, Tokyo, 255–268.Google Scholar
  32. Brennen, C.E., Oey, K., and Babcock, C.D. (1980). On the leading edge flutter of cavitating hydrofoils. J. Ship Res., 24, No. 3, 135–146.Google Scholar
  33. Brennen, C.E., Meissner, C., Lo, E.Y., and Hoffman, G.S. (1982). Scale effects in the dynamic transfer functions for cavitating inducers. ASME J. Fluids Eng., 104, 428–433.Google Scholar
  34. Breugelmans, F.A.E. and Sen, M. (1982). Prerotation and fluid recirculation in the suction pipe of centrifugal pumps. Proc. 11th Int. Pump Symp., Texas A&M Univ., 165–180.Google Scholar
  35. Brown, F.T. (1967). A unified approach to the analysis of uniform one-dimensional distributed systems. ASME J. Basic Eng., 89, No. 6, 423–432.Google Scholar
  36. Busemann, A. (1928). Das Förderhöhenverhältnis radialer Kreiselpumpen mit logarithmischspiraligen Schaufeln. Z. angew. Math. u. Mech., 8, 372.MATHGoogle Scholar
  37. Ceccio, S.L. and Brennen, C.E. (1991). Observations of the dynamics and acoustics of travelling bubble cavitation. J. Fluid Mech., 233, 633–660. Corrigenda, 240, 686.Google Scholar
  38. Chahine, G.L. (1982). Cloud cavitation theory. Proc. 14th ONR Symp. on Naval Hydrodynamics, 165–194.Google Scholar
  39. Chamieh, D. (1983). Forces on a whirling centrifugal pump-impeller. Ph.D. Thesis, Calif. Inst. of Tech., and Div. of Eng. and App. Sci. Report No. E249.2. Google Scholar
  40. Chamieh, D.S., Acosta, A.J., Brennen, C.E., and Caughey, T.K. (1985). Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump-impeller. ASME J. Fluids Eng., 107, No. 3, 307–315.Google Scholar
  41. Chivers, T.C. (1969). Cavitation in centrifugal pumps. Proc. Inst. Mech. Eng., 184, Part I, No. 2, 37–68.Google Scholar
  42. Constant, H. (1939). Performance of cascades of aerofoils. Royal Aircraft Est. Note No. E3696 and ARC Rep. No. 4155.Google Scholar
  43. Cooper, P. (1967). Analysis of single-and two-phase flows in turbo-pump inducers. ASME J. Eng. Power, 89, 577–588.Google Scholar
  44. Cumpsty, N. A. (1977). Review—a critical review of turbomachinery noise. ASME J. Fluids Eng., 99, 278–293.Google Scholar
  45. d’Agostino, L. and Brennen, C.E. (1983). On the acoustical dynamics of bubble clouds. ASME Cavitation and Multiphase Flow Forum, 72–75.Google Scholar
  46. d’Agostino, L., Brennen, C.E., Acosta, A.J. (1988). Linearized dynamics of two-dimensional bubbly and cavitating flows over slender surfaces. J. Fluid Mech., 192, 485–509.MathSciNetGoogle Scholar
  47. d’Agostino, L. and Brennen, C.E. (1989). Linearized dynamics of spherical bubble clouds. J. Fluid Mech., 199, 155–176.MATHMathSciNetGoogle Scholar
  48. Dean, R. C. (1959). On the necessity of unsteady flow in fluid machines. ASME J. Basic Eng., 81, 24–28.Google Scholar
  49. del Valle, J., Braisted, D.M., and Brennen, C.E. (1992). The effects of inlet flow modification on cavitating inducer performance. ASME J. Turbomachinery, 114, 360–365.Google Scholar
  50. De Siervi, F., Viguier, H.C., Greitzer, E.M., and Tan, C.S. (1982). Mechanisms of inlet-vortex formation. J. Fluid Mech., 124, 173–207.Google Scholar
  51. Dixon, S.L. (1978). Fluid mechanics, thermodynamics of turbomachinery. Pergamon Press.Google Scholar
  52. Dussourd, J. L. (1968). An investigation of pulsations in the boiler feed system of a central power station. ASME J. Basic Eng., 90, 607–619.Google Scholar
  53. Eckardt, D. (1976). Detailed flow investigations with a high-speed centrifugal compressor impeller. ASME J. Fluids Eng., 98, 390–420.Google Scholar
  54. Ek, B. (1957). Technische Strömungslehre. Springer-Verlag.Google Scholar
  55. Emmons, H.W., Pearson, C.E., and Grant, H.P. (1955). Compressor surge and stall propagation. Trans. ASME, 79, 455–469.Google Scholar
  56. Emmons, H.W., Kronauer, R.E., and Rockett, J.A. (1959). A survey of stall propagation—experiment and theory. ASME J. Basic Eng., 81, 409–416.Google Scholar
  57. Fanelli, M. (1972). Further considerations on the dynamic behaviour of hydraulic turbomachinery. Water Power, June 1972, 208–222.Google Scholar
  58. Ferguson, T.B. (1963). The centrifugal compressor stage. Butterworth, London.Google Scholar
  59. Fischer, K. and Thoma, D. (1932). Investigation of the flow conditions in a centrifugal pump. Trans. ASME, Hydraulics, 54, 141–155.Google Scholar
  60. Fitzpatrick, H.M. and Strasberg, M. (1956). Hydrodynamic sources of sound. Proc. First ONR Symp. on Naval Hydrodynamics, 241–280.Google Scholar
  61. Franz, R., Acosta, A.J., Brennen, C.E. and Caughey, T.K. (1989). The rotordynamic forces on a centrifugal pump impeller in the presence of cavitation. Proc. ASME Symp. Pumping Machinery, FED-81, 205–212.Google Scholar
  62. Franz, R., Acosta, A.J., Brennen, C.E. and Caughey, T.K. (1990). The rotordynamic forces on a centrifugal pump impeller in the presence of cavitation. ASME J. Fluids Eng., 112, 264–271.Google Scholar
  63. Fung, Y.C. (1955). An introduction to the theory of aeroelasticity. John Wiley and Sons.Google Scholar
  64. Furuya, O. and Acosta, A.J. (1973). A note on the calculation of supercavitating hydrofoils with rounded noses. ASME J. Fluids Eng., 95, 222–228.Google Scholar
  65. Furuya, O. (1974). Supercavitating linear cascades with rounded noses. ASME J. Basic Eng., Series D, 96, 35–42.Google Scholar
  66. Gongwer, C. (1941). A theory of cavitation flow in centrifugal-pump impellers. Trans. ASME, 63, 29–40.Google Scholar
  67. Greitzer, E.M. (1976). Surge and rotating stall in axial flow compressors. Part I: Theoretical compression system model. Part II: Experimental results and comparison with theory. ASME J. Eng. for Power, 98, 190–211.Google Scholar
  68. Greitzer, E.M. (1981). The stability of pumping systems—the 1980 Freeman Scholar Lecture. ASME J. Fluids Eng., 103, 193–242.Google Scholar
  69. Grist, E. (1974). NPSH requirements for avoidance of unacceptable cavitation erosion in centrifugal pumps. Proc. I.Mech.E. Conf. on Cavitation, 153–163.Google Scholar
  70. Gross, L.A. (1973). An experimental investigation of two-phase liquid oxygen pumping. NASA TN D-7451.Google Scholar
  71. Guinard, P., Fuller, T. and Acosta, A.J. (1953). Experimental study of axial flow pump cavitation. Calif. Inst. of Tech. Hydro. Lab. Report, E-19.3.Google Scholar
  72. Ham, N.D. (1968). Aerodynamic loading on a two-dimensional airfoil during dynamic stall. AIAA J., 6, 1927–1934.MATHGoogle Scholar
  73. Hartmann, M.J. and Soltis, R.F. (1960). Observation of cavitation in a low hub-tip ratio axial flow pump. Proc. Gas Turbine Power and Hydraulic Conf., ASME Paper No. 60-HYD-14.Google Scholar
  74. Henderson and Tucker. (1962). Performance investigation of some high speed pump inducers. R.P.E. Tech. Note 214. Reported by Janigro and Ferrini (1973) but not located by the author.Google Scholar
  75. Hennyey, Z. (1962). Linear electric circuits. Pergamon Press.Google Scholar
  76. Hergt, P. and Benner, R. (1968). Visuelle Untersuchung der Strömung in Leitrad einer Radialpumpe. Schweiz. Banztg., 86, 716–720.Google Scholar
  77. Hobson, D. E. and Marshall, A. (1979). Surge in centrifugal pumps. Proc. 6th Conf. on Fluid Machinery, Budapest, 475–483.Google Scholar
  78. Holl, J.W. (1969). Limited cavitation. Cavitation State of Knowledge, ASME, 26–63.Google Scholar
  79. Horlock, J.H. (1973). Axial flow compressors. Robert E. Krieger Publ. Co., New York.Google Scholar
  80. Horlock, J.H. and Lakshminarayana, B. (1973). Secondary flows: theory, experiment and application in turbomachinery aerodynamics. Ann. Rev. Fluid Mech., 5, 247–279.Google Scholar
  81. Howard, J.H.G. and Osborne, C. (1977). A centrifugal compressor flow analysis employing a jet-wake passage model. ASME J. Fluids Eng., 99, 141–147.Google Scholar
  82. Howell, A.R. (1942). The present basis of axial flow compressor design: Part I—Cascade theory and performance. ARC R and M No. 2095.Google Scholar
  83. Hydraulic Institute, New York. (1965). Standards of the Hydraulic Institute (11th edition).Google Scholar
  84. Jaeger, C. (1963). The theory of resonance in hydro-power systems, discussion of incidents and accidents occurring in pressure systems. ASME J. Basic Eng., 85, 631–640.Google Scholar
  85. Jakobsen, J.K. (1964). On the mechanism of head breakdown in cavitating inducers. ASME J. Basic Eng., 86, 291–304.Google Scholar
  86. Jakobsen, J.K. (1971). Liquid rocket engine turbopumps. NASA SP 8052.Google Scholar
  87. Janigro, A. and Ferrini, F. (1973). Inducer pumps. In Recent progress in pump research, von Karman Inst. for Fluid Dynamics, Lecture Series 61.Google Scholar
  88. Jansen, W. 1964. Rotating stall in a radial vaneless diffuser. ASME J. Basic Eng., 86, 750–758.Google Scholar
  89. Japikse, D. (1984). Turbomachinery diffuser design technology. Concepts ETI, Inc., Norwich, VT.Google Scholar
  90. Johnston, J.P. and Dean, R.C. (1966). Losses in vaneless diffusers of centrifugal compressors and pumps. ASME J. Eng. for Power, 88, 49–62.Google Scholar
  91. Johnson, V.E. and Hsieh, T. (1966). The influence of the trajectories of gas nuclei on cavitation inception. Proc. 6th ONR Symp. on Naval Hydrodynamics, 7–1.Google Scholar
  92. Kamijo, K., Shimura, T., and Watanabe, M. (1977). An experimental investigation of cavitating inducer instability. ASME Paper 77-WA/FW-14.Google Scholar
  93. Kamijo, K., Shimura, T., and Watanabe, M. (1980). A visual observation cavitating inducer instability. Nat. Aero. Lab. (Japan), Rept. NAL TR-598T.Google Scholar
  94. Kamijo, K., Yoshida, M., and Tsujimoto, Y. (1992). Hydraulic and mechanical performance of LE-7 LOX pump inducer. Proc. 28th Joint Propulsion Conf., Paper AIAA-92-3133.Google Scholar
  95. Kemp, N. H. and Ohashi, H. (1975). Forces on unstaggered airfoil cascades in unsteady in-phase motion with applications to harmonic oscillation. Proc. Symp. on Unsteady Aerodynamics, Tuscon, Ariz., 793–826.Google Scholar
  96. Kemp, N. H. and Sears, W. R. (1955). The unsteady forces due to viscous wakes in turbomachines. J. Aero Sci., 22, No.7, 478–483.MATHGoogle Scholar
  97. Kermeen, R.W. (1956). Water tunnel tests of NACA 4412 and Walchner Profile 7 hydrofoils in noncavitating and cavitating flows. Calif. Inst. of Tech., Hydrodynamics Lab. Rep. 47-5.Google Scholar
  98. Knapp, R.T., Daily, J.W., and Hammitt, F.G. (1970). Cavitation. McGraw-Hill, New York.Google Scholar
  99. König, E. (1922). Potentialströmung durch Gitter. Z. angew. Math. u. Mech., 2, 422.Google Scholar
  100. Lazarkiewicz, S. and Troskolanski, A.T. (1965). Pompy wirowe. (Impeller pumps.) Translated from Polish by D.K.Rutter. Publ. by Pergamon Press.Google Scholar
  101. Lee, C.J.M. (1966). Written discussion in Proc. Symp. on Pump Design, Testing and Operation, Natl. Eng. Lab., Scotland, 114–115.Google Scholar
  102. Lieblein, S., Schwenk, F.C., and Broderick, R.L. (1953). Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements. NACA RM E53D01.Google Scholar
  103. Lieblein, S. (1965). Experimental flow in two-dimensional cascades. Aerodynamic design of axial flow compressors, NASA SP-36, 183–226.Google Scholar
  104. Lenneman, E. and Howard, J. H. G. (1970). Unsteady flow phenomena in centrifugal impeller passages. ASME J. Eng. for Power, 92-1, 65–72.Google Scholar
  105. Lush, P.A. and Angell, B. (1984). Correlation of cavitation erosion and sound pressure level. ASME J. Fluids Eng., 106, 347–351.Google Scholar
  106. Makay, E. (1980). Centrifugal pump hydraulic instability. Electric Power Res. Inst. Rep. EPRI CS-1445.Google Scholar
  107. Makay, E. and Szamody, O. (1978). Survey of feed pump outages. Electric Power Res. Inst. Rep. FP-754.Google Scholar
  108. Mansell, C.J. (1974). Impeller cavitation damage on a pump operating below its rated discharge. Proc. of Conf. on Cavitation, Inst. of Mech. Eng., 185–191.Google Scholar
  109. Martin, M. (1962). Unsteady lift and moment on fully cavitating hydrofoils at zero cavitation number. J. Ship Res., 6, No.1, 15–25.Google Scholar
  110. McCroskey, W. J. (1977). Some current research in unsteady fluid dynamics—the 1976 Freeman Scholar Lecture. ASME J. Fluids Eng., 99, 8–38.Google Scholar
  111. McNulty, P.J. and Pearsall, I.S. (1979). Cavitation inception in pumps. ASME Int. Symp. on Cavitation Inception, 163–170.Google Scholar
  112. Mikolajczak, A. A., Arnoldi, R. A., Snyder, L. E., and Stargardter, H. (1975). Advances in fan and compressor blade flutter analysis and predictions. J. Aircraft, 12, No.4, 325–332.Google Scholar
  113. Miller, C.D. and Gross, L.A. (1967). A performance investigation of an eight-inch hubless pump inducer in water and liquid nitrogen. NASA TN D-3807.Google Scholar
  114. Mimura, Y. (1958). The flow with wake past an oblique plate. J. Phys. Soc. Japan, 13, 1048–1055.MathSciNetGoogle Scholar
  115. Moore, R.D. and Meng, P.R. (1970a). Thermodynamic effects of cavitation of an 80.6° helical inducer operated in hydrogen. NASA TN D-5614.Google Scholar
  116. Moore, R.D. and Meng, P.R. (1970b). Effect of blade leading edge thickness on cavitation performance of 80.6° helical inducers in hydrogen. NASA TN D5855.Google Scholar
  117. Murai, H. (1968). Observations of cavitation and flow patterns in an axial flow pump at low flow rates (in Japanese). Mem. Inst. High Speed Mech., Tohoku Univ., 24, No.246, 315–333.Google Scholar
  118. NASA. (1970). Prevention of coupled structure-propulsion instability. NASA SP-8055.Google Scholar
  119. Natanzon, M.S., Bl’tsev, N.E., Bazhanov, V.V., and Leydervarger, M.R. (1974). Experimental investigation of cavitation-induced oscillations of helical inducers. Fluid Mech., Soviet Res., 3, No.1, 38–45.Google Scholar
  120. Ng, S.L. and Brennen, C.E. (1978). Experiments on the dynamic behavior of cavitating pumps. ASME J. Fluids Eng., 100, No. 2, 166–176.Google Scholar
  121. Pearsall, I.S. (1963). Supercavitation for pumps and turbines. Engineering (GB), 196(5081), 309–311.Google Scholar
  122. Ohashi, H. (1968). Analytical and experimental study of dynamic characteristics of turbopumps. NASA TN D-4298.Google Scholar
  123. Okamura, T. and Miyashiro, H. (1978). Cavitation in centrifugal pumps operating at low capacities. ASME Symp. on Polyphase Flow in Turbomachinery, 243–252.Google Scholar
  124. Omta, R. (1987). Oscillations of a cloud of bubbles of small and not so small amplitude. J. Acoust. Soc. Amer., 82, 1018–1033.Google Scholar
  125. Oshima, M. and Kawaguchi, K. (1963). Experimental study of axial and mixed flow pumps. Proc. IAHR Symp. on Cavitation and Hydraulic Machinery, Sendai, Japan, 397–416.Google Scholar
  126. Parkin, B.R. (1952). Scale effects in cavitating flow. Ph.D. Thesis, Calif. Inst. of Tech., Pasadena.Google Scholar
  127. Parkin, B.R. (1958). Experiments on circular-arc and flat plate hydrofoils. J. Ship Res., 1, 34–56.Google Scholar
  128. Parkin, B.R. (1962). Numerical data on hydrofoil reponse to non-steady motions at zero cavitation number. J. Ship Res., 6, 40–42.Google Scholar
  129. Paynter, H.M. (1961). Analysis and design of engineering systems. MIT Press.Google Scholar
  130. Pearsall, I.S. (1963). Supercavitation for pumps and turbines. Engineering (GB), 196(5081), 309–311.Google Scholar
  131. Pearsall, I.S. (1966–67). Acoustic detection of cavitation. Proc. Inst. Mech. Eng., 181, No. 3A.Google Scholar
  132. Pearsall, I.S. (1978). Off-design performance of pumps. von Karman Inst. for Fluid Dynamics, Lecture Series 1978-3.Google Scholar
  133. Peck, J.F. (1966). Written discussion in Proc. Symp. on Pump Design, Testing and Operation, Nat. Eng. Lab., Scotland, 256–273.Google Scholar
  134. Pfleiderer, C. (1932). Die Kreiselpumpen. Julius Springer, Berlin.Google Scholar
  135. Pipes, L.A. (1940). The matrix theory for four terminal networks. Phil. Mag., 30, 370.MathSciNetGoogle Scholar
  136. Pipes, L.A. (1963). Matrix methods for engineering. Prentice-Hall, Inc., NJ.MATHGoogle Scholar
  137. Platzer, M. F. (1978). Unsteady flows in turbomachines—a review of current developments. AGARD Rept. CP-227.Google Scholar
  138. Plesset, M.S. (1949). The dynamics of cavitation bubbles. Trans. ASME, J. Appl. Mech., 16, 228–231.Google Scholar
  139. Rohatgi, U.S. (1978). Pump model for two-phase transient flow. In Polyphase Flow in Turbomachinery (eds: C.E. Brennen, P. Cooper and P.W. Runstadler, Jr.), ASME, 101–120.Google Scholar
  140. Rosenmann, W. (1965). Experimental investigations of hydrodynamically induced shaft forces with a three bladed inducer. Proc. ASME Symp. on Cavitation in Fluid Machinery, 172–195.Google Scholar
  141. Roudebush, W.H. (1965). Potential flow in two-dimensional cascades. Aerodynamic design of axial flow compressors, NASA SP-36, 101–149.Google Scholar
  142. Roudebush, W.H. and Lieblein, S. (1965). Viscous flow in two-dimensional cascades. Aerodynamic design of axial flow compressors, NASA SP-36, 151–181.Google Scholar
  143. Rubin, S. (1966). Longitudinal instability of liquid rockets due to propulsion feedback (Pogo). J. Spacecraft and Rockets, 3, No.8, 1188–1195.Google Scholar
  144. Ruggeri, R.S. and Moore, R.D. (1969). Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds. NASA TN D-5292.Google Scholar
  145. Sabersky, R.H., Acosta, A.J. and Hauptmann, E.G. (1989). Fluid flow (3rd edition), Chapters 12 and 13. Macmillan Publ. Co.Google Scholar
  146. Sack, L.E. and Nottage, H.B. (1965). System oscillations associated with cavitating inducers. ASME J. Basic Eng., 87, 917–924.Google Scholar
  147. Salemann, V. (1959). Cavitation and NPSH requirements of various liquids. ASME J. Basic Eng., 81, 167–180.Google Scholar
  148. Samoylovich, G.S. (1962). On the calculation of the unsteady flow around an array of arbitrary profiles vibrating with arbitrary phase shift. Prikladnaya Matematika i Mekhanika, No.4.Google Scholar
  149. Schorr, B. and Reddy, K.C. (1971). Inviscid flow through cascades in oscillatory and distorted flow. AIAA J., 9, 2043–2050.MATHGoogle Scholar
  150. Silberman, E. (1959). Experimental studies of supercavitating flow about simple twodimensional bodies in a jet. J. Fluid Mech., 5, 337–354.MATHGoogle Scholar
  151. Silberman, E. and Song, C.S. (1961). Instability of ventilated cavities. J. Ship Res., 5, 13–33.Google Scholar
  152. Sisto, F. (1953). Stall-flutter in cascades. J. Aero. Sci., 20, 598–604.Google Scholar
  153. Sisto, F. (1967). Linearized theory of non-stationary cascades at fully stalled or supercavitating conditions. Zeitschrift fur Angewandte Mathematik und Mechanik, 8, 531–542.Google Scholar
  154. Sisto, F. (1977). A review of the fluid mechanics of aeroelasticity in turbomachines. ASME J. Fluids Eng., 99, 40–44.Google Scholar
  155. Sloteman, D.P., Cooper, P., and Dussourd, J.L. (1984). Control of backflow at the inlets of centrifugal pumps and inducers. Proc. Int. Pump Symp., Texas A&M Univ., 9–22.Google Scholar
  156. Song, C.S. (1962). Pulsation of ventilated cavities. J. Ship Res., 5, 8–20Google Scholar
  157. Sparks, C.R. and Wachel, J.C. (1976). Pulsations in liquid pumps and piping systems. Proc. 5th Turbomachinery Symp., 55–61.Google Scholar
  158. Spraker, W.A. (1965). The effect of fluid properties on cavitation in centrifugal pumps. ASME J. Eng. Power, 87, 309–318.Google Scholar
  159. Stahl, H.A. and Stepanoff, A.J. (1956). Thermodynamic aspects of cavitation in centrifugal pumps. Trans. ASME, 78, 1691–1693.Google Scholar
  160. Stanitz, J.D. (1952). Some theoretical aerodynamic investigations of impellers in radialand mixed-flow centrifugal compressors. Trans. ASME, 74, 473–497.Google Scholar
  161. Stepanoff, A.J. (1948). Centrifugal and axial flow pumps. John Wiley & Sons, Inc.Google Scholar
  162. Stepanoff, A.J. (1961). Cavitation in centrifugal pumps with liquids other than water. ASME J. Eng. Power, 83, 79–90.Google Scholar
  163. Stepanoff, A.J. (1964). Cavitation properties of liquids. ASME J. Eng. Power, 86, 195–200.Google Scholar
  164. Stodola, A. (1927). Steam and gas turbines. Volumes I and II. McGraw-Hill, New York.Google Scholar
  165. Strecker, F. and Feldtkeller, R. (1929). Grundlagen der Theorie des allgemeinen Vierpols. Elektrische Nachrichtentechnik, 6, 93.Google Scholar
  166. Streeter, V.L. and Wylie, E.B. (1967). Hydraulic transients. McGraw-Hill.Google Scholar
  167. Streeter, V.L. and Wylie, E.B. (1974). Waterhammer and surge control. Ann. Rev. Fluid Mech., 6, 57–73.Google Scholar
  168. Stripling, L.B. and Acosta, A.J. (1962). Cavitation in turbopumps-Part I. ASME J. Basic Eng., 84, 326–338.Google Scholar
  169. Stripling, L.B. (1962). Cavitation in turbopumps-Part II. ASME J. Basic Eng., 84, 339–350.Google Scholar
  170. Strub, R.A. (1963). Pressure fluctuations and fatigue stresses in storage pumps and pump-turbines. ASME Paper No. 63-AHGT-11.Google Scholar
  171. Sturge, D.P. and Cumpsty, N.A. (1975). Two-dimensional method for calculating separated flow in a centrifugal impeller. ASME J. Fluids Eng., 97, 581–579.Google Scholar
  172. Tsujimoto, Y., Imaichi, K., Tomohiro, T., and Gatoo, M. (1986). A two-dimensional analysis of unsteady torque on mixed flow impellers. ASME J. Fluids Eng., 108, No. 1, 26–33.Google Scholar
  173. Tsujimoto, Y., Kamijo, K., and Yoshida, Y. (1992). A theoretical analysis of rotating cavitation in inducers. ASME Cavitation and Multiphase Flow Forum, FED 135, 159–166.Google Scholar
  174. Tsukamoto, H. and Ohashi, H. (1982). Transient characteristics of centrifugal turbomachines. ASME J. Fluids Eng., 104, No. 1, 6–14.Google Scholar
  175. Tulin, M.P. (1953). Steady two-dimensional cavity flows about slender bodies. David Taylor Model Basin Rep. 834.Google Scholar
  176. Tulin, M.P. (1964). Supercavitating flows-small perturbation theory. J. Ship Res., 7, No. 3, 16–37.MathSciNetGoogle Scholar
  177. Tyler, J.M. and Sofrin, T.G. (1962). Axial compressor noise studies. Soc. Automotive Eng., 70, 309–332.Google Scholar
  178. Vaage, R.D., Fidler, L.E., and Zehnle, R.A. (1972). Investigation of characteristics of feed system instabilities. Final Rept. MCR-72-107, Martin Marietta Corp., Denver, Col.Google Scholar
  179. van der Braembussche, R. (1982). Rotating stall in vaneless diffusers of centrifugal compressors. von Karman Inst. for Fluid Dyn., Technical Note 145.Google Scholar
  180. Verdon, J.M. (1985). Linearized unsteady aerodynamic theory. United Technologies Research Center Report R85-151774-1.Google Scholar
  181. Wade, R.B. and Acosta, A.J. (1966). Experimental observations on the flow past a planoconvex hydrofoil. ASME J. Basic Eng., 88, 273–283.Google Scholar
  182. Wade, R.B. and Acosta, A.J. (1967). Investigation of cavitating cascades. ASME J. Basic Eng., Series D, 89, 693–706.Google Scholar
  183. Whitehead, D. (1960). Force and moment coefficients for vibrating airfoils in cascade. ARC R&M 3254, London.Google Scholar
  184. Wiesner, F.J. (1967). A review of slip factors for centrifugal impellers. ASME J. Eng. for Power, 89, 558–576.Google Scholar
  185. Wijdieks, J. (1965). Greep op het ongrijpbare—II. Hydraulische aspecten bij het ontwerpen van pompinstallaties. Delft Hydraulics Laboratory Publ. 43.Google Scholar
  186. Wislicenus, G.F. (1947). Fluid mechanics of turbomachinery. McGraw-Hill, New York.Google Scholar
  187. Wood, G.M. (1963). Visual cavitation studies of mixed flow pump impellers. ASME J. Basic Eng., Mar. 1963, 17–28.Google Scholar
  188. Woods, L.C. (1955). On unsteady flow through a cascade of airfoils. Proc. Roy. Soc. A, 228, 50–65.MATHMathSciNetGoogle Scholar
  189. Woods, L.C. (1957). Aerodynamic forces on an oscillating aerofoil fitted with a spoiler. Proc. Roy. Soc. A, 239, 328–337.MATHMathSciNetGoogle Scholar
  190. Woods, L.C. (1961). The theory of subsonic plane flow. Cambridge Univ. Press.Google Scholar
  191. Worster, R.C. (1963). The flow in volutes and its effect on centrifugal pump performance. Proc. Inst. of Mech. Eng., 177, No. 31, 843–875.Google Scholar
  192. Wu, T.Y. (1956). A free streamline theory for two-dimensional fully cavitated hydrofoils. J. Math. Phys., 35, 236–265.MATHGoogle Scholar
  193. Wu, T.Y. (1962). A wake model for free streamline flow theory, Part 1. Fully and partially developed wake flows and cavity flows past an oblique flat plate. J. Fluid Mech., 13, 161–181.MATHMathSciNetGoogle Scholar
  194. Wu, T.Y. and Wang, D.P. (1964). A wake model for free streamline flow theory, Part 2. Cavity flows past obstacles of arbitrary profile. J. Fluid Mech., 18, 65–93.MATHMathSciNetGoogle Scholar
  195. Wu, T.Y. (1972). Cavity and wake flows. Ann. Rev. Fluid Mech., 4, 243–284.Google Scholar
  196. Yamamoto, K. (1991). Instability in a cavitating centrifugal pump. JSME Int. J., Ser. II, 34, 9–17.Google Scholar
  197. Yoshida, Y., Murakami, Y., Tsurusaki, T., and Tsujimoto, Y. (1991). Rotating stalls in centrifugal impeller/vaned diffuser systems. Proc. First ASME/JSME Joint Fluids Eng. Conf., FED-107, 125–130.Google Scholar
  198. Young, W.E., Murphy, R., and Reddecliff, J.M. (1972). Study of cavitating inducer instabilities. Pratt and Whitney Aircraft, Florida Research and Development Center, Rept. PWA FR-5131.Google Scholar

Copyright information

© CISM, Udine 2007

Authors and Affiliations

  • Christopher E. Brennen
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations