• David K. Banfield
  • Wanjin Hong


Eukaryotic cells contain multiple membrane-bound compartments between which proteins and lipid molecules are continually shuttled via membrane-bound vesicular carriers. Despite the constant flux of proteins and lipid through these compartments their functional and composition integrity is maintained. While the molecular machinery involved in vesicle recognition and fusion can often be transport-step/fusion-event specific, one group of proteins & #x2014; the SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) play a common and central role in this process. Transport-step-specific combinations of SNARE proteins, localized to the vesicle and the target organelle, form complexes that facilitate the final step leading to the fusion of vesicles with their cognate target organelles. In general, the role of SNAREs appears to be conserved irrespective of their location of function in the cell, and much of what has been established for SNAREs in a particular trafficking pathway or organelle, is broadly applicable to SNAREs that function in the Golgi. Here we review Golgi SNAREs and the role they play in membrane and protein trafficking in the Golgi apparatus with, a particular emphasis on their functions in yeast and human cells.


Membrane Fusion Snare Complex Snare Protein Golgi Membrane Conserve Oligomeric Golgi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan BB, Moyer BD, Balch WE (2000) Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289: 444–448PubMedCrossRefGoogle Scholar
  2. Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR (2002) Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Biol 9: 107–111PubMedCrossRefGoogle Scholar
  3. Arac D, Dulubova I, Pei J, Huryeva I, Grishin NV, Rizo J (2005) Three-dimensional structure of the rSly1 N-terminal domain reveals a conformational change induced by binding to syntaxin 5. J Mol Biol 346: 589–601PubMedCrossRefGoogle Scholar
  4. Ballensiefen W, Ossipov D, Schmitt HD (1998) Recycling of the yeast v-SNARE Sec22p involves COPI-proteins and the ER transmembrane proteins Ufe1 p and Sec20p. J Cell Sci 111(Pt 11): 1507–1520PubMedGoogle Scholar
  5. Banfield DK (2001) SNARE complexes & #x2014; is there sufficient complexity for vesicle targeting specificity? Trends Biochem Sci 26: 67–68PubMedCrossRefGoogle Scholar
  6. Banfield DK, Lewis MJ, Rabouille C, Warren G, Pelham HR (1994) Localization of Sed5, a putative vesicle targeting molecule, to the cis-Golgi network involves both its transmembrane and cytoplasmic domains. J Cell Biol 127: 357–371PubMedCrossRefGoogle Scholar
  7. Bentley M, Liang Y, Mullen K, Xu D, Sztul E, Hay JC (2006) SNARE status regulates tether recruitment and function in homotypic COPII vesicle fusion. J Biol Chem 281: 38825–38833PubMedCrossRefGoogle Scholar
  8. Bethani I, Lang T, Geumann U, Sieber JJ, Jahn R, Rizzoli SO (2007) The specificity of SNARE pairing in biological membranes is mediated by both proof-reading and spatial segregation. EMBO J 26: 3981–3992PubMedCrossRefGoogle Scholar
  9. Bock JB, Matern HT, Peden AA, Scheller RH (2001 ) A genomic perspective on membrane compartment organization. Nature 409: 839–841PubMedCrossRefGoogle Scholar
  10. Bracher A, Weissenhorn W (2002) Structural basis for the Golgi membrane recruitment of Sly1pby Sed5p. EMBO J 21:6114–6124PubMedCrossRefGoogle Scholar
  11. Brandon E, Szul T, Alvarez C, Grabski R, Benjamin R, Kawai R, Sztul E (2006) On and off membrane dynamics of the endoplasmic reticulum-Golgi tethering factor p115 in vivo. Mol Biol Cell 17: 2996–3008PubMedCrossRefGoogle Scholar
  12. Bretscher MS, Munro S (1993) Cholesterol and the Golgi apparatus. Science 261: 1280–1281PubMedCrossRefGoogle Scholar
  13. Brunger AT, DeLaBarre B (2003) NSF and p97/VCP: similar at first, different at last. FEBS Lett 555: 126–133PubMedCrossRefGoogle Scholar
  14. Cao X, Ballew N, Barlowe C (1998) Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J 17: 2156–2165PubMedCrossRefGoogle Scholar
  15. Charest A, Lane K, McMahon K, Housman DE (2001) Association of a novel PDZ domain-containing peripheral Golgi protein with the Q-SNARE (Q-soluble N-ethylmalei-mide-sensitive fusion protein (NSF) attachment protein receptor) protein syntaxin 6. J Biol Chem 276: 29456–29465PubMedCrossRefGoogle Scholar
  16. Chiu R, Novikov L, Mukherjee S, Shields D (2002) A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis. J Cell Biol 159: 637–648PubMedCrossRefGoogle Scholar
  17. Cosson P, Ravazzola M, Varlamov O, Sllner TH, Di Liberto M, Volchuk A, Rothman JE, Orci L (2005) Dynamic transport of SNARE proteins in the Golgi apparatus. Proc Natl Acad Sci USA 102: 14647–14652PubMedCrossRefGoogle Scholar
  18. Diao A, Frost L, Morohashi Y, Lowe M (2007) Coordination of golgin tethering and SNARE assembly: GM130 binds syntaxin 5 in a p115-regulated manner. J Biol Chem 283:6957–6967PubMedCrossRefGoogle Scholar
  19. Dietrich LE, Gurezka R, Veit M, Ungermann C (2004) The SNARE Ykt6 mediates protein palmitoylation during an early stage of homotypic vacuole fusion. EMBO J 23:45–53PubMedCrossRefGoogle Scholar
  20. Dulubova I, Yamaguchi T, Arac D, Li H, Huryeva I, Min SW, Rizo J, Sudhof TC (2003) Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins. Proc Natl Acad Sci USA 100: 32–37PubMedCrossRefGoogle Scholar
  21. Dulubova I, Yamaguchi T, Gao Y, Min SW, Huryeva I, Sudhof TC, Rizo J (2002) How Tlg2p/syntaxin 16’ snares’ Vps45. EMBO J 21: 3620–3631PubMedCrossRefGoogle Scholar
  22. Fasshauer D, Antonin W, Margittai M, Pabst S, Jahn R (1999) Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J Biol Chem 274: 15440–15446PubMedCrossRefGoogle Scholar
  23. Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q-and R-SNAREs. Proc Natl Acad Sci USA 95: 15781–15786PubMedCrossRefGoogle Scholar
  24. Fotso P, Koryakina Y, Pavliv O, Tsiomenko AB, Lupashin VV (2005) Coglp plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J Biol Chem 280: 27613–27623PubMedCrossRefGoogle Scholar
  25. Fukasawa M, Varlamov O, Eng WS, Sollner TH, Rothman JE (2004) Localization and activity of the SNARE Ykt6 determined by its regulatory domain and palmitoylation. Proc Natl Acad Sci USA 101: 4815–4820PubMedCrossRefGoogle Scholar
  26. Furst J, Sutton RB, Chen J, Brunger AT, Grigorieff N (2003) Electron cryomicroscopy structure of N-etyl maleimide sensitive factor at 11 A resolution. EMBO J 22: 4365–4374PubMedCrossRefGoogle Scholar
  27. Ganley IG, Espinosa E, Pfeffer SR (2008) A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. J Cell Biol 180: 159–172PubMedCrossRefGoogle Scholar
  28. Gerst JE (2003) SNARE regulators: matchmakers and matchbreakers. Biochim Biophys Acta 1641:99–110PubMedCrossRefGoogle Scholar
  29. Graf CT, Riedel D, Schmitt HD, Jahn R (2005) Identification of functionally interacting SNAREs by using complementary substitutions in the conserved ‘0’ layer. Mol Biol Cell 16:2263–2274PubMedCrossRefGoogle Scholar
  30. Han X, Wang CT, Bai J, Chapman ER, Jackson MB (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2 +-triggered exocytosis. Science 304: 289–292PubMedCrossRefGoogle Scholar
  31. Hasegawa H, Yang Z, Oltedal L, Davanger S, Hay JC (2004) Intramolecular protein-protein and protein-lipid interactions control the conformation and subcellular targeting of neuronal Ykt6. J Cell Sci 117: 4495–4508PubMedCrossRefGoogle Scholar
  32. Hay JC, Klumperman J, Oorschot V, Steegmaier M, Kuo CS, Scheller RH (1998) Localization, dynamics, and protein interactions reveal distinct roles for ER and Golgi SNAREs. J Cell Biol 141: 1489–1502PubMedCrossRefGoogle Scholar
  33. Heinrich R, Rapoport TA (2005) Generation of nonidentical compartments in vesicular transport systems. J Cell Biol 168: 271–280PubMedCrossRefGoogle Scholar
  34. Hicks SW, Machamer CE (2005) Isoform-specific interaction of golgin-160 with the Golgi-associated protein PIST. J Biol Chem 280: 28944–28951PubMedCrossRefGoogle Scholar
  35. Hohl TM, Parlati F, Wimmer C, Rothman JE, Sollner TH, Engelhardt H (1998) Arrangement of subunits in 20 S particles consisting of NSF, SNAPs, and SNARE complexes. Mol Cell 2: 539–548PubMedCrossRefGoogle Scholar
  36. Honda A, Al-Awar OS, Hay JC, Donaldson JG (2005) Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE. J Cell Biol 168: 1039–1051PubMedCrossRefGoogle Scholar
  37. Joglekar AP, Xu D, Rigotti DJ, Fairman R, Hay JC (2003) The SNARE motif contributes to rbet1 intracellular targeting and dynamics independently of SNARE interactions. J Biol Chem 278: 14121–14133PubMedCrossRefGoogle Scholar
  38. Katz L, Brennwald P (2000) Testing the 3Q:1R “rule”: mutational analysis of the ionic “zero” layer in the yeast exocytic SNARE complex reveals no requirement for arginine. Mol Biol Cell 11: 3849–3858PubMedGoogle Scholar
  39. Kim YG, Raunser S, Munger C, Wagner J, Song YL, Cygler M, Walz T, Oh BH, Sacher M (2006) The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell 127: 817–830PubMedCrossRefGoogle Scholar
  40. Kosodo Y, Noda Y, Adachi H, Yoda K (2002) Binding of Sly 1 to Sed5 enhances formation of the yeast early Golgi SNARE complex. J Cell Sci 115:3683–3691PubMedCrossRefGoogle Scholar
  41. Kweon Y, Rothe A, Conibear E, Stevens TH (2003) Ykt6p is a multifunctional yeast R-SNARE that is required for multiple membrane transport pathways to the vacuole. Mol Biol Cell 14: 1868–1881PubMedCrossRefGoogle Scholar
  42. Lane JD, Lucocq J, Pryde J, Barr FA, Woodman PG, Allan VJ, Lowe M (2002) Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156: 495–509PubMedCrossRefGoogle Scholar
  43. Lane JD, Vergnolle MA, Woodman PG, Allan VJ (2001) Apoptotic cleavage of cyto-plasmicdynein intermediate chain and p150(Glued) stops dynein-dependent membrane motility. J Cell Biol 153: 1415–1426PubMedCrossRefGoogle Scholar
  44. Legesse-Miller A, Sagiv Y, Glozman R, Elazar Z (2000) Aut7p, a soluble autophagic factor, participates in multiple membrane trafficking processes. J Biol Chem 275: 32966–32973PubMedCrossRefGoogle Scholar
  45. Li Y, Gallwitz D, Peng R (2005) Structure-based functional analysis reveals a role for the SM protein Sly1p in retrograde transport to the endoplasmic reticulum. Mol Biol Cell 16:3951–3962PubMedCrossRefGoogle Scholar
  46. Liu Y, Barlowe C (2002) Analysis of Sec22p in endoplasmic reticulum/Golgi transport reveals cellular redundancy in SNARE protein function. Mol Biol Cell 13: 3314–3324PubMedCrossRefGoogle Scholar
  47. Liu Y, Flanagan JJ, Barlowe C (2004) Sec22p export from the endoplasmic reticulum is independent of SNARE pairing. J Biol Chem 279: 27225–27232PubMedCrossRefGoogle Scholar
  48. Lowe M, Lane JD, Woodman PG, Allan VJ (2004) Caspase-mediated cleavage of Syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis. J Cell Sci 117: 1139–1150PubMedCrossRefGoogle Scholar
  49. Lupashin VV, Pokrovskaya ID, McNew JA, Waters MG (1997) Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic. Mol Biol Cell 8: 2659–2676PubMedGoogle Scholar
  50. Mancias JD, Goldberg J (2007) The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol Cell 26:403–414PubMedCrossRefGoogle Scholar
  51. Mancini M, Machamer CE, Roy S, Nicholson DW, Thornberry NA, Casciola-Rosen LA, Rosen A (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 149: 603–612PubMedCrossRefGoogle Scholar
  52. Marz KE, Lauer JM, Hanson PI (2003) Defining the SNARE complex binding surface of alpha-SNAP: implications for SNARE complex disassembly. J Biol Chem 278: 27000–27008PubMedCrossRefGoogle Scholar
  53. McNew JA, Weber T, Engelman DM, Sollner TH, Rothman JE (1999) The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol Cell 4: 415–421PubMedCrossRefGoogle Scholar
  54. McNew JA, Weber T, Parlati F, Johnston RJ, Melia TJ, Sollner TH, Rothman JE (2000) Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J Cell Biol 150: 105–117PubMedCrossRefGoogle Scholar
  55. Melia TJ, Weber T, McNew JA, Fisher LE, Johnston RJ, Parlati F, Mahal LK, Sollner TH, Rothman JE (2002) Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J Cell Biol 158: 929–940PubMedCrossRefGoogle Scholar
  56. Montecucco C, Schiavo G, Pantano S (2005) SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem Sci 30: 367–372PubMedCrossRefGoogle Scholar
  57. Morsomme P, Prescianotto-Baschong C, Riezman H (2003) The ER v-SNAREs are required for GPI-anchored protein sorting from other secretory proteins upon exit from the ER. J Cell Biol 162:403–412PubMedCrossRefGoogle Scholar
  58. Mossessova E, Bickford LC, Goldberg J (2003) SNARE selectivity of the COPII coat. Cell 114: 483–495PubMedCrossRefGoogle Scholar
  59. Muller JM, Shorter J, Newman R, Deinhardt K, Sagiv Y, Elazar Z, Warren G, Shima DT (2002) Sequential SNARE disassembly and GATE-16-GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion. J Cell Biol 157: 1161–1173PubMedCrossRefGoogle Scholar
  60. Nilsson T, Slusarewicz P, Hoe MH, Warren G (1993) Kin recognition. A model for the retention of Golgi enzymes. FEBS Lett 330: 1–4PubMedCrossRefGoogle Scholar
  61. Oka T, Krieger M (2005) Multi-component protein complexes and Golgi membrane trafficking. J Biochem (Tokyo) 137: 109–114Google Scholar
  62. Oka T, Ungar D, Hughson FM, Krieger M (2004) The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol Biol Cell 15:2423–2435PubMedCrossRefGoogle Scholar
  63. Ossipov D, Schroder-Kohne S, Schmitt HD (1999) Yeast ER-Golgi v-SNAREs Boslp and Betlp differ in steady-state localization and targeting. J Cell Sci 112(Pt 22): 4135–4142PubMedGoogle Scholar
  64. Parlati F, McNew JA, Fukuda R, Miller R, Sollner TH, Rothman JE (2000) Topological restriction of SNARE-dependent membrane fusion. Nature 407: 194–198PubMedCrossRefGoogle Scholar
  65. Parlati F, Varlamov O, Paz K, McNew JA, Hurtado D, Sollner TH, Rothman JE (2002) Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc Natl Acad Sci USA 99: 5424–5429PubMedCrossRefGoogle Scholar
  66. Paumet F, Rahimian V, Rothman JE (2004) The specificity of SNARE-dependent fusion is encoded in the SNARE motif. Proc Natl Acad Sci USA 101: 3376–3380PubMedCrossRefGoogle Scholar
  67. Peng R, Gallwitz D (2004) Multiple SNARE interactions of an SM protein: Sed5p/Sly1p binding is dispensable for transport. EMBO J 23: 3939–3949PubMedCrossRefGoogle Scholar
  68. Peng R, Gallwitz D (2002) Sly 1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol 157: 645–655PubMedCrossRefGoogle Scholar
  69. Pobbati AV, Stein A, Fasshauer D (2006) N-to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313: 673–676PubMedCrossRefGoogle Scholar
  70. Prekeris R, Klumperman J, Scheller RH (2000) Syntaxin 11 is an atypical SNARE abundant in the immune system. Eur J Cell Biol 79: 771–780PubMedCrossRefGoogle Scholar
  71. Puthenveedu MA, Linstedt AD (2004) Gene replacement reveals that p115/SNARE interactions are essential for Golgi biogenesis. Proc Natl Acad Sci USA 101: 1253–1256PubMedCrossRefGoogle Scholar
  72. Rayner JC, Pelham HR (1997) Transmembrane domain-dependent sorting of proteinsto the ER and plasma membrane in yeast. EMBO J 16: 1832–1841PubMedCrossRefGoogle Scholar
  73. Rein U, Andag U, Duden R, Schmitt HD, Spang A (2002) ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat. J Cell Biol 157: 395–404PubMedCrossRefGoogle Scholar
  74. Rickman C, Hu K, Carroll J, Davletov B (2005) Self-assembly of SNARE fusion proteins into star-shaped oligomers. Biochem J 388: 75–79PubMedCrossRefGoogle Scholar
  75. Sagiv Y, Legesse-Miller A, Porat A, Elazar Z (2000) GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J 19: 1494–1504PubMedCrossRefGoogle Scholar
  76. Sapperstein SK, Lupashin VV, Schmitt HD, Waters MG (1996) Assembly of the ER to Golgi SNARE complex requires Usolp. J Cell Biol 132: 755–767PubMedCrossRefGoogle Scholar
  77. Sapperstein SK, Walter DM, Grosvenor AR, Heuser JE, Waters MG (1995) p115 is a general vesicular transport factor related to the yeast endoplasmic reticulum to Golgi transport factor Usolp. Proc Natl Acad Sci USA 92: 522–526PubMedCrossRefGoogle Scholar
  78. Schindler C, Spang A (2007) Interaction of SNAREs with ArfGAPs precedes recruitment of Sec18p/NSF. Mol Biol Cell 18: 2852–2863PubMedCrossRefGoogle Scholar
  79. Schlenker O, Hendricks A, Sinning I, Wild K (2006) The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains. J Biol Chem 281: 8898–8906PubMedCrossRefGoogle Scholar
  80. Shestakova A, Suvorova E, Pavliv O, Khaidakova G, Lupashin V (2007) Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J Cell Biol 179: 1179–1192PubMedCrossRefGoogle Scholar
  81. Shorter J, Beard MB, Seemann J, Dirac-Svejstrup AB, Warren G (2002) Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. J Cell Biol 157: 45–62PubMedCrossRefGoogle Scholar
  82. Siddiqi SA, Siddiqi S, Mahan J, Peggs K, Gorelick FS, Mansbach CM II (2006) The identification of a novel endoplasmic reticulum to Golgi SNARE complex used by the prechylomicron transport vesicle. J Biol Chem 281: 20974–20982PubMedCrossRefGoogle Scholar
  83. Snyder DA, Kelly ML, Woodbury DJ (2006) SNARE complex regulation by phosphorylation. Cell Biochem Biophys 45: 111–123PubMedCrossRefGoogle Scholar
  84. Sorensen JB, Wiederhold K, Muller EM, Milosevic I, Nagy G, De Groot BL, Grubmuller H, Fasshauer D (2006) Sequential N-to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 25: 955–966PubMedCrossRefGoogle Scholar
  85. Spang A, Schekman R (1998) Reconstitution of retrograde transport from the Golgi to the ER in vitro. J Cell Biol 143: 589–599PubMedCrossRefGoogle Scholar
  86. Stone S, Sacher M, Mao Y, Carr C, Lyons P, Quinn AM, Ferro-Novick S (1997) Betlp activates the v-SNARE Boslp. Mol Biol Cell 8: 1175–1181PubMedGoogle Scholar
  87. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395: 347–353PubMedCrossRefGoogle Scholar
  88. Suvorova ES, Duden R, Lupashin W (2002) The Sec34/Sec35p complex, a Ypt1 p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157: 631–643PubMedCrossRefGoogle Scholar
  89. Sztul E, Lupashin V (2006) Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 290, C11–C26PubMedCrossRefGoogle Scholar
  90. Tochio H, Tsui MM, Banfield DK, Zhang M (2001) An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p. Science 293: 698–702PubMedCrossRefGoogle Scholar
  91. Tsui MM, Banfield DK (2000) Yeast Golgi SNARE interactions are promiscuous. J Cell Sci 113(Pt 1): 145–152PubMedGoogle Scholar
  92. Tsui MM, Tai WC, Banfield DK (2001) Selective formation of Sed5p-containing SNARE complexes is mediated by combinatorial binding interactions. Mol Biol Cell 12: 521–538PubMedGoogle Scholar
  93. Valdez-Taubas J, Pelham H (2005) Swf 1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation. EMBO J 24: 2524–2532PubMedCrossRefGoogle Scholar
  94. Varlamov O, Volchuk A, Rahimian V, Doege CA, Paumet F, Eng WS, Arango N, Parlati F, Ravazzola M, Orci L, Sollner TH, Rothman JE (2004) i-SNAREs: inhibitory SNAREsthat fine-tune the specificity of membrane fusion. J Cell Biol 164: 79–88PubMedCrossRefGoogle Scholar
  95. Veit M (2004) The human SNARE protein Ykt6 mediates its own palmitoylation at C-terminal cysteine residues. Biochem J 384: 233–237PubMedCrossRefGoogle Scholar
  96. Veit M (2000) Palmitoylation of the 25-kDa synaptosomal protein (SNAP-25) in vitro occurs in the absence of an enzyme, but is stimulated by binding to syntaxin. Biochem J 345(Pt 1): 145–151PubMedCrossRefGoogle Scholar
  97. Vogel K, Roche PA (1999) SNAP-23 and SNAP-25 are palmitoylated in vivo. Biochem Biophys Res Commun 258: 407–410PubMedCrossRefGoogle Scholar
  98. Volchuk A, Ravazzola M, Perrelet A, Eng WS, Di Liberto M, Varlamov O, Fukasawa M, Engel T, Sollner TH, Rothman JE, Orci L (2004) Countercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack. Mol Biol Cell 15: 1506–1518PubMedCrossRefGoogle Scholar
  99. Von Mollard GF, Nothwehr SF, Stevens TH (1997) The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. J Cell Biol 137: 1511–1524CrossRefGoogle Scholar
  100. Watson RT, Pessin JE (2001) Transmembrane domain length determines intracellular membrane compartment localization of syntaxins 3, 4, and 5. Am J Physiol Cell Physiol 281:C215–C223PubMedGoogle Scholar
  101. Weinberger A, Kamena F, Kama R, Spang A, Gerst JE (2005) Control of Golgi morphology and function by Sed5 t-SNARE phosphorylation. Mol Biol Cell 16: 4918–4930PubMedCrossRefGoogle Scholar
  102. Williams AL, Ehm S, Jacobson NC, Xu D, Hay JC (2004) rsly1 binding to Syntaxin 5 is required for endoplasmic reticulum-to-Golgi transport but does not promote SNARE motif accessibility. Mol Biol Cell 15: 162–175PubMedCrossRefGoogle Scholar
  103. Wimmer C, Hohl TM, Hughes CA, Muller SA, Sollner TH, Engel A, Rothman JE (2001) Molecular mass, stoichiometry, and assembly of 20 S particles. J Biol Chem 276: 29091–29097PubMedCrossRefGoogle Scholar
  104. Wooding S, Pelham HR (1998) The dynamics of Golgi protein traffic visualized in living yeast cells. Mol Biol Cell 9: 2667–2680PubMedGoogle Scholar
  105. Xu D, Joglekar AP, Williams AL, Hay JC (2000) Subunit structure of a mammalian ER/Golgi SNARE complex. J Biol Chem 275: 39631–39639PubMedCrossRefGoogle Scholar
  106. Xu Y, Martin S, James DE, Hong W (2002) GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus. Mol Biol Cell 13: 3493–3507PubMedCrossRefGoogle Scholar
  107. Xu Y, Zhang F, Su Z, McNew JA, Shin YK (2005) Hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 12: 417–422PubMedCrossRefGoogle Scholar
  108. Yamaguchi T, Dulubova I, Min SW, Chen X, Rizo J, Sudhof TC (2002) Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev Cell 2: 295–305PubMedCrossRefGoogle Scholar
  109. Yang B, Gonzalez L Jr, Prekeris R, Steegmaier M, Advani RJ, Scheller RH (1999) SNARE interactions are not selective. Implications for membrane fusion specificity. J Biol Chem 274: 5649–5653PubMedCrossRefGoogle Scholar
  110. Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, Yanagida K, Sato A, Toshimori K, Noda T (2002) Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci USA 99: 11211–11216PubMedCrossRefGoogle Scholar
  111. Zhang T, Hong W (2001) Ykt6 forms a SNARE complex with syntaxin 5, GS28, and Bet1 and participates in a late stage in endoplasmic reticulum-Golgi transport. J Biol Chem 276: 27480–27487PubMedCrossRefGoogle Scholar
  112. Zolov SN, Lupashin W (2005) Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168: 747–759PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2008

Authors and Affiliations

  • David K. Banfield
    • 1
  • Wanjin Hong
    • 2
  1. 1.Department of Biology The Hong Kong University of Science and TechnologyClear Water BayKnowloon, Hong KongSAR of China
  2. 2.Department of Biology The Hong Kong University of Science and TechnologyClear Water BayKnowloon Hong KongSAR of China

Personalised recommendations