Skip to main content

The Golgi apparatus as a crossroads in intracellular traffic

  • Chapter

Abstract

In this chapter, we will briefly describe the structure and list main functions of different compartments along the secretory pathway.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonny B, Schekman R (2001) ER export: publ ic transportation by the COPII coach. Curr Opin Cell Biol 13: 438–443

    Article  PubMed  CAS  Google Scholar 

  • Aridor M, Bannykh SI, Rowe T, Balch WE (1999) Cargo can modulate COPII vesicle formation from the endoplasmic reticulum. J Biol Chem 274: 4389–4399

    Article  PubMed  CAS  Google Scholar 

  • Bannykh SI, Rowe T, Balch WE (1996) The organization of endoplasmic reticulum export complexes. J Cell Biol 135: 19–35

    Article  PubMed  CAS  Google Scholar 

  • Bannykh SI, Plutner H, Matteson J, Balch WE (2005) The role of ARF1 and rab GTPases in polarization of the Golgi stack. Traffic 6(9): 803–819

    Article  PubMed  CAS  Google Scholar 

  • Ben-Tekaya H, Miura K, Pepperkok R, Hauri HP (2005) Live imaging of bidirectional traffic from the ERGIC. J Cell Sci 118(Pt2): 357–367

    Article  PubMed  CAS  Google Scholar 

  • Beznoussenko GV, Sesorova IS, Banin W (2006) Electron-tomographic analysis of the Golgi complex structure in cultured cells. Morfologiia 129(3): 41–44

    Google Scholar 

  • Bivona TG, Perez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ, Cullen PJ, Pellicer A, Cox AD, Philips MR (2003) Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424: 694–698

    Article  PubMed  CAS  Google Scholar 

  • Blest AD, Powell K, Kao L (1978) Photoreceptor membrane breakdown in the spider Dinopis: GERL differentiation in the receptors. Cell Tissue Res 195(2): 277–297

    Article  PubMed  CAS  Google Scholar 

  • Blouin A (1983) Anatomy, ultrastructure and morphometry of the liver. In: Glaumann H, Peters T Jr, Redman C (eds) Plasma protein secretion by the liver. Academic, New York, pp 31–53

    Google Scholar 

  • Bonatti S, Migliaccio G, Simons K (1989) Palmitylation of viral membrane glycoproteins takes place after exit from the endoplasmic reticulum. J Biol Chem 264(21): 12590–12595

    PubMed  CAS  Google Scholar 

  • Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116(2): 153–166

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Rojas R (2006) Retorgrade transport from endosomes to the trans-Golgi network. Nature Rev Mol Cell Biol 7: 568–579

    Article  CAS  Google Scholar 

  • Bracker C, Grove SN, Heintz CE, Morre DJ (1971) Continuity between endomembrane components in hyphae of Pythium spp. Cytobiologie 4: 1–8

    Google Scholar 

  • Broadwell RD, Cataldo AM (1983) The neuronal endoplasmic reticulum: its cytochemistry and contribution to the endomembrane system. I. Cell bodies and dendrities. J Histochem Cytochem 31: 1077–1088

    PubMed  CAS  Google Scholar 

  • Claude A (1970) Growth and differentiation of cytoplasmic membranes in the course of lipoprotein granule synthesis in the hepatic cell. I. Elaboration of elements of the Golgi complex. J Cell Biol 47: 745–766

    Article  PubMed  CAS  Google Scholar 

  • Clermont Y, Rambourg A, Hermo L (1995) Trans-Golgi network (TGN) of different cell types: three-dimensional structural characteristics and variability. Anat Rec 242(3): 289–301

    Article  PubMed  CAS  Google Scholar 

  • Cluett EB, Kuismanen E, Machamer CE (1997) Heterogeneous distribution of the unusual phospholipid semilysobisphosphatidic acid through the Golgi complex. Mol Biol Cell 8: 2233–2240

    PubMed  CAS  Google Scholar 

  • Cooper MS, Cornell-Bell AH, Chernjavsky A, Dani JW, Smith SJ (1990) Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-Golgi elements into a reticulum. Cell 61(1): 135–145

    Article  PubMed  CAS  Google Scholar 

  • De Graffenried CL, Bertozzi CR (2004) The roles of enzyme localisation and complex formation in glycan assembly within the Golgi apparatus. Curr Opin Cell Biol 16: 356–363

    Article  PubMed  CAS  Google Scholar 

  • De Matteis MA, Di Campli A, D’Angelo G (2007) Lipid-transfer proteins in membrane trafficking at the Golgi complex. Biochim Biophys Acta 1771(6): 761–768

    PubMed  Google Scholar 

  • De Matteis MA, Luini A (2008) Exiting the Golgi complex. Nat Rev Mol Cell Biol 9(4): 273–284

    Article  PubMed  CAS  Google Scholar 

  • DeBose-Boyd RA, Brown MS, Li WP, Nohturfft A, Goldstein JL, Espenshade PJ (1999) Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell 99: 703–712

    Article  PubMed  CAS  Google Scholar 

  • Decker RS (1974) Lysosomal packaging in differentiating and degenerating anuran lateral motor column neurons. J Cell Biol 61(3): 599–612

    Article  PubMed  CAS  Google Scholar 

  • Farquhar MG (1985) Progressin unraveling pathways of Golgi traffic. Annu Rev Cell Biol 1:447–488

    Article  PubMed  CAS  Google Scholar 

  • Flickinger CJ (1969) The development of Golgi complexes and their dependence upon the nucleus in amoebae. J Cell Biol 49: 250–262

    Article  Google Scholar 

  • Flickinger CL (1973) Maintenance and regeneration of cytoplasmic organelles in hybrid amoebae formed by nuclear transplantation. Exp Cell Res 80: 31–46

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Kartenbeck J (1976) Some principles of membrane differentiation. In: Mueller-Berat N (ed) Progress in differentiation research. Elsevier-North Holland Publishing Co., Amsterdam, pp 213–243

    Google Scholar 

  • Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234(4775): 438–443

    Article  PubMed  CAS  Google Scholar 

  • Griffiths G, Fuller SD, Back R, Hollinshead M, Pfeiffer S, Simons K (1989) The dynamic nature of the Golgi complex. J Cell Biol 108: 277–297

    Article  PubMed  CAS  Google Scholar 

  • Griffiths G, Pepperkok R, Locker JK, Kreis TE (1995) Immunocytochemical localization of beta-COP to the ER-Golgi boundary and the TGN. J Cell Sci 108(Pt 8): 2839–2856

    PubMed  CAS  Google Scholar 

  • Gusarova V, Seo J, Sullivan ML, Watkins SC, Brodsky JL, Fisher EA (2007) Golgi-associated maturation of very low density lipoproteins involves conformational changes in apolipoprotein B, but is not dependent on apolipoprotein E. J Biol Chem 282(27): 19453–19462

    Article  PubMed  CAS  Google Scholar 

  • Hammond C, Helenius A (1994) Qua l ity control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J Cell Biol 126: 41–52

    Article  PubMed  CAS  Google Scholar 

  • Hammond AT, Glick BS (2000) Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol Biol Cell 11(9): 3013–3030

    PubMed  CAS  Google Scholar 

  • Hashimoto H, Abe M, Hirata A, Noda Y, Adachi H, Yoda K (2002) Progression of the stacked Golgi compartments in the yeast Saccharomyces cerevisiae by overproduction of GDP-mannose transporter. Yeast 19: 1413–1424

    Article  PubMed  CAS  Google Scholar 

  • Helms JB, HelmsBrons D, Brugger B, Gkantiragas I, Eberle H, Nickel W, Nurnberg B, Gerdes HH, Wieland FT (1998) A putative heterotrimeric G protein inhibits the fusion of COPI-coated vesicles-segregation of heterotrimeric G proteins from COPI-coated vesicles. J Biol Chem 273: 15203–15208

    Article  PubMed  CAS  Google Scholar 

  • Hermo L, Smith CE (1998) The structure of the Golgi apparatus: a sperm’s eye view in principal epithelial cells of the rat epididymis. Histochem Cell Biol 109(5-6): 431-447

    Google Scholar 

  • Ho HC, Tang CY, Suarez SS (1999) Three-dimensional structure of the Golgi apparatus in mouse spermatids: a scanning electron microscopic study. Anat Rec 256(2): 189–194

    Article  PubMed  CAS  Google Scholar 

  • Holzman E (1971) Cytochemical studies of protein transport in the nervous system. Philos Trans R Soc Lond (Biol) 261: 407–421

    Article  Google Scholar 

  • Ikonen E, De Almeid JB, Fath KR, Burgess DR, Ashman K, Simons K, Stow JL (1997) Myosin II is associated with Golgi membranes: identification of p200 as nonmuscle myosin II on Golgi-derived vesicles. J Cell Sci 110(Pt18): 2155–2164

    PubMed  CAS  Google Scholar 

  • Inoue T (1992) Complementary scanning electron microscopy: technical notes and applications. Arch Histol Cytol 55(Suppl): 45–51

    Article  PubMed  Google Scholar 

  • Keller P, Simons K (1998) Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol 140(6): 1357–1367

    Article  PubMed  CAS  Google Scholar 

  • Koga D, Ushiki T (2006) Three-dimensional ultrastructure of the Golgi apparatus in different cel ls: high-resolution scanning electron microscopy of osmium-macerated tissues. Arch Histol Cytol 69(5): 357–374

    Article  PubMed  Google Scholar 

  • Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G (1994) Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol 124(1–2): 55–70

    Article  PubMed  CAS  Google Scholar 

  • Kweon HS, Beznoussenko GV, Micaroni M, Polishchuk RS, Trucco A, Martella O, Di Giandomenico D, Marra P, Fusella A, Di Pentima A, Berger EG, Geerts WJ, Koster AJ, Burger KN, Luini A, Mironov AA (2004) Golgi enzymes are enriched in perforated zones of Golgi cisternae but are depleted in COPI vesicles. Mol Biol Cell 15: 4710–4724

    Article  PubMed  CAS  Google Scholar 

  • Ladinsky MS, Kremer JR, Furcinitti PS, McIntosh JR, Howell KE (1994) HVEM tomography of the trans-Golgi network: structural insights and identification of a lace-like vesicle coat. J Cell Biol 127(1): 29–38

    Article  PubMed  CAS  Google Scholar 

  • Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144: 1135–1149

    Article  PubMed  CAS  Google Scholar 

  • Ladinsky MS, Wu CC, McIntosh S, McIntosh JR, Howell K (2002) Structure of the Golgi and distribution of reporter molecules at 20° C reveals the complexity of the exit compartments. Mol Biol Cell 13: 2810–2825

    Article  PubMed  CAS  Google Scholar 

  • Lane JD, Lucocq J, Pryde J, Barr FA Woodman PG, Allan VJ, Lowe M (2002) Caspasemediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156: 495–509

    Article  PubMed  CAS  Google Scholar 

  • Lindsey JD, Ellisman MH (1985a) The neuronal endomembrane system. I. Direct links between rough endoplasmicreticulum and the cis-elementofthe Golgi apparatus. J Neurosci 5:3111–3123

    PubMed  CAS  Google Scholar 

  • Lindsey JD, Ellisman MH (1985b) The neuronal endomembrane system. II. The multiple forms of the Golgi apparatus cis element. J Neurosci 5(12): 3124–3134

    PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz J (1993) Bidirectional membrane traffic between the endoplasmic reticulum and Golgi apparatus. Trends Cell Biol 3(3): 81–88

    Article  PubMed  CAS  Google Scholar 

  • Marra P, Maffucci T, Daniele T, Tullio GD, Ikehara Y, Chan EK, Luini A, Beznoussenko G, Mironov A, De Matteis MA (2001) The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nat Cell Biol 3(12): 1101–1013

    Article  PubMed  CAS  Google Scholar 

  • Marra P, Salvatore L, Mironov A Jr, Di Campli A, Di Tullio G, Trucco A, Beznoussenko G, Mironov A, De Matteis MA (2007) The biogenesis of the Golgi ribbon: the roles of membrane input from the ER and of GM130. Mol Biol Cell 18(5): 1595–1608

    Article  PubMed  CAS  Google Scholar 

  • Marsh BJ (2005) Lessons from tomographic studies of the mammalian Golgi. Biochim Biophys Acta 1744(3): 273–292

    Article  PubMed  CAS  Google Scholar 

  • Marsh BJ, Mastronarde DN, Buttle KF, Howell KE, McIntosh JR (2001) Organellar relationships in the Golgi region of pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Nat Acad Sci USA 98: 2399–2406

    Article  PubMed  CAS  Google Scholar 

  • Marsh BJ, Volkmann N, McIntosh JR, Howell KE (2004) Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc Natl Acad Sci USA 101(15): 5565–5570

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Menarguez JA, Geuze HJ, Slot JW, Klumperman J (1999) Vesicular tubular clusters (VTCs) between ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98: 81–90

    Article  PubMed  Google Scholar 

  • Maul GG, Brinkley BR (1970) Golgi apparatus during mitosis in human melanoma cells in vitro. Cancer Res 30: 2326–2332

    PubMed  CAS  Google Scholar 

  • McMahon HT, Mills IG (2004) COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr Opin Cell Biol 16: 379–391

    Article  PubMed  CAS  Google Scholar 

  • McIntosh JR (2001) Electron microscopy of cells: a new beginning for a new century. J Cell Biol 153: F25–F32

    Article  PubMed  CAS  Google Scholar 

  • Medigeshi GR, Schu P (2003) Characterization of the in vitro retrograde transport of MPR46. Traffic 4: 802–811

    Article  PubMed  CAS  Google Scholar 

  • Mellman L, Simons KS (1992) The Golgi complex: in vitro veriras? Cell 68: 829–840

    Article  PubMed  CAS  Google Scholar 

  • Mironov A Jr, Luini A, Mironov A (1998) A synthetic model of intra-Golgi traffic. FASEBJ 12:249–252

    CAS  Google Scholar 

  • Mironov AA Jr, Mironov AA (1998) Estimation of subcellular organelle volume from ultrathin sections through centrioles with a discretized version of vertical rotator. J Microsc 192:29–36

    Article  PubMed  Google Scholar 

  • Mironov AA, Beznoussenko GV, Nicoziani P, Martella O, Trucco A Kweon HS, Di Giandomenico D, Polishchuk RS, Fusella A, Lupetti P, Berger EG, Geerts WJ, Koster AJ, Burger KN, Luini A (2001) Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J Cell Biol 155: 1225–1238

    Article  PubMed  CAS  Google Scholar 

  • Mironov AA, Mironov AAJr, Beznoussenko GV, Trucco A Lupetti P, Smith JD, Geerts WJ, Koster AJ, Burger KN, MartoneME, DeerinckTJ, Ellisman MH, Luini A (2003) ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev Cell 5: 583–594

    Article  PubMed  CAS  Google Scholar 

  • Mironov AA, Beznoussenko GV, Polishchuk RS, Trucco A (2005) Intra-Golgi transport. Away to a new paradigm? BBA Mol Cell Res 1744: 340–350

    CAS  Google Scholar 

  • Mobius W, Ohno-Iwashita Y, Van Donselaar EG, Oorschot VM, Shimada Y, Fujimoto T, Heijnen HF, Geuze HJ, Slot JW (2002) Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J Histochem Cytochem 50(1): 43–55

    PubMed  CAS  Google Scholar 

  • Mobius W, Van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF, Slot JW, Geuze HJ (2003) Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4(4): 222–231

    Article  PubMed  CAS  Google Scholar 

  • Mogelsvang S, Marsh BJ, Ladinsky MS, Howell KE (2004) Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic 5:338–345

    Article  PubMed  CAS  Google Scholar 

  • Mollenhauer HH, Morre DJ (1978) Structural differences contrast higher plant and animal Golgi apparatus. J Cell Sci 32: 357–362

    PubMed  CAS  Google Scholar 

  • Morin-Ganet MN, Rambourg A, Deitz SB, Franzusoff A, Kepes F (2000) Morphogenesis and dynamics of the yeast Golgi apparatus. Traffic 1: 56–68

    Article  PubMed  CAS  Google Scholar 

  • Morre DJ, Keenan TW, Huang CM (1974) Membrane flow and differentiation: origin of Golgi apparatus membranes from endoplasmic reticulum. Adv Cytopharmacol 2: 107–125

    PubMed  CAS  Google Scholar 

  • Morre DJ, Kartenbeck J, Franke WW (1979) Membraneflowand intercoversionsamong endomembranes. Biochim Biophys Acta 559(1): 71–152

    PubMed  CAS  Google Scholar 

  • Motta PM, Nottola SA Familiari G, Macchiarelli G, Vizza E, Correr S (1995) Ultrastructure of human reproduction from folliculogenesis to early embryo development. A review. Ital J Anat Embryol 100(4): 9–72

    PubMed  CAS  Google Scholar 

  • Nardini M, Spano S, Cericola C, Pesce A, Massaro A, Millo E, Luini A, Corda D, Bolognesi M (2003) CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J 22: 3122–3130

    Article  PubMed  CAS  Google Scholar 

  • Narula N, McMorrow I, Plopper G, Doherty J, Matlin KS, Burke B, Stow JL (1992) Identification of a 200-kD, brefeldin-sensitive protein on Golgi membranes. J Cell Biol 117(1): 27–38

    Article  PubMed  CAS  Google Scholar 

  • Narula N, Stow JL (1995) Distinct coated vesicles labeled for p200 bud from trans-Golgi network membranes. Proc Natl Acad Sci USA 92(7): 2874–2878

    Article  PubMed  CAS  Google Scholar 

  • Nebenfuhr A, Staehelin LA (2001) Mobile factories: Golgi dynamics in plant cells. Trends Plant Sci 6(4): 160–167

    Article  PubMed  CAS  Google Scholar 

  • Novikoff AB (1964) GERL, its form and function in neurons of rat spinal ganglia. Biol Bull 127:358

    Google Scholar 

  • Novikoff PM, Novikoff AB, Quintana N, Hauw JJ (1971) Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J Cell Biol 50(3): 859–886

    Article  PubMed  CAS  Google Scholar 

  • Novikoff AB, Novikoff PM (1977) Cytochemical contributions to differentiating GERL from the Golgi apparatus. Histochem J 9(5): 525–551

    Article  PubMed  CAS  Google Scholar 

  • Novikoff PM, Yam A (1978) Sites of lipoprotein particles in normal rat hepatocytes. J Cell Biol 76(1): 1–11

    Article  PubMed  CAS  Google Scholar 

  • Oprins A, Duden R, Kreis TE, Geuze HJ, Slot JW (1993) b-COP localizes mainly to the cis-Golgi side in exocrine pancreas. J Cell Biol 121: 49–59

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Montesano R, Meda P, Malaisse-Lagae F, Brown D, Perrelet A, Vassalli P (1981) Heterogeneous distribution of filipin-cholesterol complexes across the cisternae of the Golgi apparatus. Proc Natl Acad Sci USA 78(1): 293–297

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Glick BS, Rothman JE (1986) Anew type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46: 171–184

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Perrelet A, Rothman JE (1998) Vesicles on strings: morphological evidence for processive transport within the Golgi stack. Proc Natl Acad Sci USA 95(5): 2279–2283

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Amherdt M, Ravazzola M, Perrelet A, Rothman JE (2000a) Exclusion of Golgi residents from transport vesicles budding from Golgi cisternae in intact cells. J Cell Biol 150: 1263–1270

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Ravazzola M, Volchuk A, Engel T, Gmachl M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (2000b) Anterograde flow of cargo across the Golgi stack potentially mediated via bidirectional’ percolating’ COPI vesicles. Proc Natl Acad Sci USA 97(19): 10400–10405

    Article  PubMed  CAS  Google Scholar 

  • Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189: 347–359

    Article  PubMed  CAS  Google Scholar 

  • Paavola LG (1978a) The corpus luteum of the guinea pig. Fine structure at the time of maximum progesterone secretion and during regression. Am J Anat 150(4): 565–603

    Article  Google Scholar 

  • Paavola LG (1978b) The corpus luteum of the guinea pig. II. Cytochemical studies on the Golgi complex, GERL, and lysosomes in luteal cells during maximal progesterone secretion. J Cell Biol 79(1): 45–58

    Article  PubMed  CAS  Google Scholar 

  • Paavola LG (1978c) The corpus luteum of the guinea pig. III. Cytochemical studies on the Golgi complex and GERL during normal postpartum regression of luteal cells, emphasizing the origin of lysosomes and autophagic vacuoles. J Cell Biol 79(1): 59–73

    Article  PubMed  CAS  Google Scholar 

  • Pagano RE, Sepanski MA, Martin OC (1989) Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J Cell Biol 109(5): 2067–2079

    Article  PubMed  CAS  Google Scholar 

  • Papp S, Dziak E, Michalak M, Opas M (2003) Is all of theendoplasmicreticulum created equal? The effects of the heterogeneous distribution of endoplasmic reticulum Ca2þ-handling proteins. J Cell Biol 160: 475–479

    Article  PubMed  CAS  Google Scholar 

  • Pavelka M, Ellinger A (1983) The trans Golgi face in rat small intestinal absorptive cells. Eur J Cell Biol 29:253–261

    PubMed  CAS  Google Scholar 

  • Pavelka M, Ellinger A (1986) The Golgi apparatus in the acinar cells of the developing embryonic pancreas. I. Morphology and enzyme cytochemistry. Am J Anat 178: 215–223

    Article  Google Scholar 

  • Pavelka M, Ellinger A, Debbage P, Loewe C, Vetterlein M, Roth J (1998) Endocytic routes to the Golgi apparatus. Histochem Cell Biol 109: 555–570

    Article  PubMed  CAS  Google Scholar 

  • Pelham HR, Hardwick KG, Lewis MJ (1988) Sorting of soluble ER proteins in yeast. EMBO J 7(6): 1757–1762

    PubMed  CAS  Google Scholar 

  • Polishchuk R, Di Pentima A, Lippincott-Schwartz J (2004) Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nat Cell Biol 6(4): 297–307

    Article  PubMed  CAS  Google Scholar 

  • Polishchuk RS, Mironov AA (2004) Structural aspects of Golgi function. Cell Mol Life Sci 61(2): 146–158

    Article  PubMed  CAS  Google Scholar 

  • Preisinger C, Short B, De Corte V, Bruyneel E, Haas A, Kopajtich R, Gettemans J, Barr FA (2004) YSK1 is activated by the Golgi matrix protein GM130and plays a role in cell migration through its substrate 14-3-3-zeta. J Cell Biol 164: 1009–1020

    Article  PubMed  CAS  Google Scholar 

  • Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G, Nilsson T (1995) Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci 108(Pt. 4): 1617–1627

    PubMed  CAS  Google Scholar 

  • Rambourg A, Clermont Y, Hermo L (1979) Three-dimensional architecture of the Golgi apparatus in Sertoli cells of the rat. Am J Anat 154: 455–476

    Article  PubMed  CAS  Google Scholar 

  • Rambourg A, Clermont Y (1990) Three-dimensional electron microscopy: structure of the Golgi apparatus. Eur J Cell Biol 51(2): 189–200

    PubMed  CAS  Google Scholar 

  • Rambourg A, Clermont Y (1997) Three-dimensional structure of the Golgi apparatus in mammalian cells. In: Roth J, Berger EG (eds) The Golgi apparatus. Birkhauser, Basel, pp 37–61

    Google Scholar 

  • Rambourg A, Clermont Y, Chretien M, Olivier L (1993) Modulation of the Golgi apparatus in stimulated and nonstimulated prolactin cells of female rats. Anat Rec 235(3): 353–362

    Article  PubMed  CAS  Google Scholar 

  • Rizzolo LJ, Finidori J, Gonzalez A, Arpin M, Ivanov IE, Adesnik M, Sabatini DD (1985) Biosynthesis and intracellular sorting of growth hormone-viral envelope glycoprotein hybrids. J Cell Biol 101(4): 1351–1362

    Article  PubMed  CAS  Google Scholar 

  • Robinson MS, Bonifacino JS (2001) Adaptor-related proteins. Curr Opin Cell Biol 13(4): 444–453

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372: 55–63

    Article  PubMed  CAS  Google Scholar 

  • Rudick VL, Rudick MJ, Brun-Zinkernagel AM (1993) Amplification of the Golgi complex in MDCK cells secreting human growth hormone. J Cell Sci 104 (Pt. 2): 509–520

    PubMed  CAS  Google Scholar 

  • Sannerud R, Saraste J, Goud B (2003) Retrograde traffic in the biosynthetic-secretory route: pathways and machinery. Curr Opin Cell Biol 15: 438–445

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Motegi N, Higashi S (1984) Morphological analysis of the Golgi apparatus in rat amelogenesis as revealed by the Ur-Pb-Cu block staining method and freeze fracture replication. J Electron Microsc 33: 19–33

    CAS  Google Scholar 

  • Seemann J, Jokitalo E, Pypaert M, Warren G (2000) Matrix proteins can generate the higher order architecture of the Golgi apparatus. Nature 407: 1022–1026

    Article  PubMed  CAS  Google Scholar 

  • Sesso A, De Faria FP, Iwamura ESM, Correa H (1994) A three-dimensional reconstruction study of the rough ER-Golgi interface in serial thin sections of the pancreatic acinar cell of the rat. J Cell Sci 107: 517–528

    PubMed  Google Scholar 

  • Shewan AM, Van Dam EM, Martin S, Luen TB, Hong W, Bryant NJ, James DE (2003) GLUT4 recycles via a trans-Golgi network (TGN) subdomain enriched in Syntaxins 6 and 16 but not TGN38: involvement of an acidic targeting motif. Mol Biol Cell 14: 973–986

    Article  PubMed  CAS  Google Scholar 

  • Stephens DJ, Crump CM, Clarke AR, Banting G (1997) Serine 331 and Tyrosine 333 are both involved in the interaction between the cytosolic domain of TGN38 and the g2 subunit of the AP2 clathrin adaptor complex. J Biol Chem 272: 14104–14109

    Article  PubMed  CAS  Google Scholar 

  • Stephens DJ, Lin-Marq N, Pagano A, Pepperkok R, Paccaud JP (2000) COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. J Cell Sci 113:2177–2185

    PubMed  CAS  Google Scholar 

  • Stinchcombe JC, Nomoto H, Cutler DF, Hopkins CR (1995) Anterograde and retrograde traffic between the rough endoplasmic reticulum and the Golgi complex. J Cell Biol 131(6 Pt 1): 1387–1401

    Article  PubMed  CAS  Google Scholar 

  • Sutterlin C, Hsu P, Mallabiabarrena A, Malhotra V (2002) Fragmentation and dispersa l of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 109: 359–369

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Mitsushima A, Fukudome H, Kashima Y (1986) Three-dimensional architecture of the Golgi complex observed by high resolution scanning electron microscopy. J Submicrosc Cytol 18(1): 1–9

    PubMed  CAS  Google Scholar 

  • Taylor RS, Jones SM, Dahl RH, Nordeen MH, Howell KE (1997) Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol Biol Cell 8: 1911–1931

    PubMed  CAS  Google Scholar 

  • Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3: 753–766

    Article  PubMed  CAS  Google Scholar 

  • Thorne-Tjomsland G, Clermont Y, Tang X (1991) Glucose-6-phosphatase activity of endoplasmic reticulum and Golgi apparatus in spermatocytes and spermatids of the rat: an electron microscopic cytochemical study. Biol Cell 71: 33–41

    Article  PubMed  CAS  Google Scholar 

  • Tooze SA, Tooze J, Warren G (1988) Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J Cell Biol 106(5): 1475–1487

    Article  PubMed  CAS  Google Scholar 

  • Tooze SA (1998) Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim Biophys Acta 1404: 231–244

    Article  PubMed  CAS  Google Scholar 

  • Traub LM, Kornfeld S (1997) The trans-Golgi network: a late secretory sorting station. Curr Opin Cell Biol 9: 527–533

    Article  PubMed  CAS  Google Scholar 

  • Traub LM (2005) Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochim Biophys Acta 1744(3): 415–437

    Article  PubMed  CAS  Google Scholar 

  • Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, Buccione R, Geerts WJ, Koster AJ, Burger KN, Mironov AA, Luini A (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6(11): 1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama Y (1982) The membrane association among the rough-and smooth-surfaced endoplasmic reticulum and Golgi apparatus in rat hepatocytes at certain circadian stages. Tohoku J Exp Med 136: 299–302

    Article  PubMed  CAS  Google Scholar 

  • Velasco A, Hidalgo J, Pérez-Vilar J, García-Herdugo G, Navas P (1988) Detection of glycosaminoglycans in the Golgi complex of chondrocytes. Eur J Cell Biol 47(2): 241–250

    PubMed  CAS  Google Scholar 

  • Vivero-Salmeron G, Ballesta J, Martinez-Menarguez JA (2008) Heterotypic tubular connections at the endoplasmatic reticulum-Golgi interface. Histochem Cell Biol (In press)

    Google Scholar 

  • Weidman P, Roth R, Heuser J (1993) Golgi membrane dynamics imaged by freeze-etch electron microscopy: views of different membrane coatings involved in tubulation versus vesiculation. Cell 75(1): 123–133

    PubMed  CAS  Google Scholar 

  • Weidman P (1995) Anterograde transport through the Golgi complex: do Golgi tubules hold the key? Trends Cell Biol 5: 302–305

    Article  PubMed  CAS  Google Scholar 

  • Williams LM, Lafontane JC (1985) An electron microscope thick section study of endomembrane organization in the Myx-amoebae of Physarum polycephalum. Protoplasma 124: 42–51

    Article  Google Scholar 

  • Young J, Stauber T, Del Nery E, Vernos I, Pepperkok R, Nilsson T (2005) Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A’. Mol Biol Cell 16: 162–177

    Article  PubMed  CAS  Google Scholar 

  • Zehavi-Feferman R, Burgess JW, Stanley KK (1995) Control of p62 binding to TGN38/41 by phosphorylation. FEBS Lett 368(1): 122–124

    Article  PubMed  CAS  Google Scholar 

  • Zeuschner D, Geerts WJ, Van Donselaar E, Humbel BM, Slot JW, Koster AJ, Klumperman J (2006) Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat Cell Biol 8: 377–383

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Mironov, A.A., Pavelka, M. (2008). The Golgi apparatus as a crossroads in intracellular traffic. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_3

Download citation

Publish with us

Policies and ethics