Skip to main content

Pre-vasospasm: early brain injury

  • Conference paper
  • First Online:
Book cover Cerebral Vasospasm

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 104))

Abstract

Despite modern advances in surgery, subarachnoid haemorrhage (SAH) continues to carry high morbidity and mortality rates. The reasons for this are currently unclear. It is certain however that vasospasm is not the only modality responsible for this. As a result the concept of Early Brain Injury (EBI) has been introduced in an effort to focus attention on other aspects of SAH. EBI occurs within the first 72 h after a SAH and encompasses the complex pathophysiological events that occur in the brain at the moment of a SAH and shortly thereafter. It has been hypothesised that these events may be responsible for many of the long term consequences of SAH that have to date remained poorly understood. The key component of EBI is apoptosis, evidence of which has been previously noted on autopsy studies. Detailed knowledge of the apoptotic pathways in relation to SAH may provide useful therapeutic options for the treatment of patients with SAH in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonsson B, Martinou JC (2000) The Bcl-2 protein family. Exp Cell Res 256(1): 50–57

    CAS  PubMed  Google Scholar 

  2. Bederson JB, Germano IM, Guarino L (1995) Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 26(6): 1086–1091

    CAS  PubMed  Google Scholar 

  3. Benchoua A, Guegan C, Couriaud C, Hosseini H, Sampaio N, Morin D, Onteniente B (2001) Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 21(18): 7127–7134

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Busch E, Beaulieu C, de Crespigny A, Moseley ME (1998) Diffusion MR imaging during acute subarachnoid hemorrhage in rats. Stroke 29(10): 2155–2161

    CAS  PubMed  Google Scholar 

  5. Cahill WJ, Calvert JH, Zhang JH (2006) Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26: 1341–1353

    CAS  PubMed  Google Scholar 

  6. Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA (2002) Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke 33(5): 1225–1232

    PubMed  Google Scholar 

  7. Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, Dawson TM, Dawson VL, Park DS, Kroemer G, Slack RS (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158(3): 507–517

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS, Slack RS (1999) Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 19(18): 7860–7869

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis RP, Zappulla RA, Spigelman MK, Feuer EJ, Malis LI, Holland JF (1986) The protective effect of experimental subarachnoid haemorrhage on sodium dehydrocholate-induced blood-brain barrier disruption. Acta Neurochir (Wien) 83(3–4): 138–143

    CAS  PubMed  Google Scholar 

  10. Doczi T (1985) The pathogenetic and prognostic significance of blood-brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies. Acta Neurochir (Wien) 77(3–4): 110–132

    CAS  PubMed  Google Scholar 

  11. Doczi TP (2001) Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 32(3): 817

    CAS  PubMed  Google Scholar 

  12. Doczi T, Joo F, Adam G, Bozoky B, Szerdahelyi P (1986) Blood-brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model. Neurosurgery 18(6): 733–739

    CAS  PubMed  Google Scholar 

  13. Fukuhara T, Douville CM, Eliott JP, Newell DW, Winn HR (1998) Relationship between intracranial pressure and the development of vasospasm after aneurysmal subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 38(11): 710–715

    CAS  Google Scholar 

  14. Germano A, d’Avella D, Imperatore C, Caruso G, Tomasello F (2000) Time-course of blood-brain barrier permeability changes after experimental subarachnoid haemorrhage. Acta Neurochir (Wien) 142(5): 575–580

    CAS  PubMed  Google Scholar 

  15. Grote E, Hassler W(1988) The critical first minutes after subarachnoid hemorrhage. Neurosurgery 22(4): 654–661

    CAS  PubMed  Google Scholar 

  16. Gules I, Satoh M, Nanda A, Zhang JH (2003) Apoptosis, blood-brain barrier, and subarachnoid hemorrhage. Acta Neurochir Suppl 86: 483–487

    CAS  PubMed  Google Scholar 

  17. Hara A, Yoshimi N, Mori H (1998) Evidence for apoptosis in human intracranial aneurysms. Neurol Res 20(2): 127–130

    CAS  PubMed  Google Scholar 

  18. Hayashi M, Marukawa S, Fujii H, Kitano T, Kobayashi H, Yamamoto S (1977) Intracranial hypertension in patients with ruptured intracranial aneurysm. J Neurosurg 46(5): 584–590

    CAS  PubMed  Google Scholar 

  19. Kassell NF, Sasaki T, Colohan AR, Nazar G (1985) Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 16(4): 562–572

    CAS  PubMed  Google Scholar 

  20. Kidd VJ (1998) Proteolytic activities that mediate apoptosis. Annu Rev Physiol 60: 533–573

    CAS  PubMed  Google Scholar 

  21. Kimelberg HK (2004) Water homeostasis in the brain: basic concepts. Neuroscience 129(4): 851–860

    CAS  PubMed  Google Scholar 

  22. Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, Du YE, Stern Y, Connolly ES, Mayer SA (2002) Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke 33(1): 200–208

    PubMed  Google Scholar 

  23. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH (2004) Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 24(8): 916–925

    CAS  PubMed  Google Scholar 

  24. Laszlo FA, Varga C, Doczi T (1995) Cerebral oedema after subarachnoid haemorrhage. Pathogenetic significance of vasopressin. Acta Neurochir (Wien) 133(3, 4): 122–133

    CAS  PubMed  Google Scholar 

  25. Matsushita K, Meng W, Wang X, Asahi M, Asahi K, Moskowitz MA, Lo EH (2000) Evidence for apoptosis after intercerebral hemorrhage in rat striatum. J Cereb Blood Flow Metab 20(2): 396–404

    CAS  PubMed  Google Scholar 

  26. Matz PG, Fujimura M, Chan PH (2000) Subarachnoid hemolysate produces DNA fragmentation in a pattern similar to apoptosis in mouse brain. Brain Res 858(2): 312–319

    CAS  PubMed  Google Scholar 

  27. Matz PG, Fujimura M, Lewen A, Morita-Fujimura Y, Chan PH (2001) Increased cytochrome c-mediated DNA fragmentation and cell death in manganese-superoxide dismutase-deficient mice after exposure to subarachnoid hemolysate. Stroke 32(2): 506–515

    CAS  PubMed  Google Scholar 

  28. Nijhawan D, Honarpour N, Wang X (2000) Apoptosis in neural development and disease. Annu Rev Neurosci 23: 73–87

    CAS  PubMed  Google Scholar 

  29. Nornes H (1978) Cerebral arterial flow dynamics during aneurysm haemorrhage. Acta Neurochir (Wien) 41(1–3): 39–48

    CAS  PubMed  Google Scholar 

  30. Orakcioglu B, Fiebach JB, Steiner T, Kollmar R, Juttler E, Becker K, Schwab S, Heiland S, Meyding-Lamade UK, Schellinger PD (2005) Evolution of early perihemorrhagic changes-ischemia vs. edema: an MRI study in rats. Exp Neurol 193(2): 369–376

    CAS  PubMed  Google Scholar 

  31. Ostrowski RP, Colohan AR, Zhang JH (2005) Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 25(5): 554–571

    CAS  PubMed  Google Scholar 

  32. Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, Zhang JH (2004) Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke 35(10): 2412–2417

    CAS  PubMed  Google Scholar 

  33. Philchenkov A (2004) Caspases: potential targets for regulating cell death. J Cell Mol Med 8(4): 432–444

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Peterson EW, Cardoso ER (1983) The blood-brain barrier following experimental subarachnoid hemorrhage. Part 1: response to insult caused by arterial hypertension. J Neurosurg 58(3): 338–344

    CAS  PubMed  Google Scholar 

  35. Reed JC (1997) Double identity for proteins of the Bcl-2 family. Nature 387(6635): 773–776

    CAS  PubMed  Google Scholar 

  36. van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9(10): 1031–1042

    PubMed  Google Scholar 

  37. Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB (1999) Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 3(2): 159–167

    Google Scholar 

  38. Vaux DL, Strasser A (1996) The molecular biology of apoptosis. Proc Natl Acad Sci USA 93(6): 2239–2244

    CAS  PubMed  Google Scholar 

  39. Voldby B, Enevoldsen EM (1982) Intracranial pressure changes following aneurysm rupture. Part 1: clinical and angiographic correlations. J Neurosurg 56(2): 186–196

    CAS  PubMed  Google Scholar 

  40. Yakovlev AG, Di Giovanni S, Wang G, Liu W, Stoica B, Faden AI (2004) BOK and NOXA are essential mediators of p53-dependent apoptosis. J Biol Chem 279(27): 28367–28374

    CAS  PubMed  Google Scholar 

  41. Zhou C, Yamaguchi M, Colohan AR, Zhang JH (2005) Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 25(5): 572–582

    CAS  PubMed  Google Scholar 

  42. Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH (2004) Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 24(4): 419–431

    CAS  PubMed  Google Scholar 

  43. Zubkov AY, Ogihara K, Bernanke DH, Parent AD, Zhang J (2000) Apoptosis of endothelial cells in vessels affected by cerebral vasospasm. Surg Neurol 53(3): 260–266

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this paper

Cite this paper

Cahill, J., Zhang, J.H. (2008). Pre-vasospasm: early brain injury. In: Kırış, T., Zhang, J.H. (eds) Cerebral Vasospasm. Acta Neurochirurgica Supplement, vol 104. Springer, Vienna. https://doi.org/10.1007/978-3-211-75718-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-75718-5_2

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-75717-8

  • Online ISBN: 978-3-211-75718-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics