Skip to main content

Synthesis of semiconductor nanocrystals in organic solvents

  • Chapter
Book cover Semiconductor Nanocrystal Quantum Dots

Abstract

Colloidal semiconductor nanocrystals (NCs) are crystalline particles with diameters ranging typically from 1 to 10 nm, comprising some hundreds to a few thousands of atoms. The inorganic core consisting of the semiconductor material is capped by an organic outer layer of surfactant molecules (“ligands”), which provide sufficient repulsion between the crystals to prevent them from agglomeration. In the nanometer size regime many physical properties of the semiconductor particles change with respect to the bulk material. Examples of this behavior are melting points and charging energies of NCs, which are, to a first approximation, proportional to the reciprocal value of their radii. At the origin of the great interest in NCs was yet another observation, namely the possibility of changing the semiconductor band gap — that is the energy difference between the electron-filled valence band and the empty conduction band — by varying the particle size. In a bulk semiconductor an electron e can be excited from the valence to the conduction band by absorption of a photon with an appropriate energy, leaving a hole h+ in the valence band. Feeling each other’s charge, the electron and hole do notmove independently from each other because of the Coulomb attraction. The formed e-h+ bound pair is called an exciton and has its lowest energy state slightly below the lower edge of the conduction band. At the same time its wave function is extended over a large region (several lattice spacings), i.e. the exciton radius is large, since the effective masses of the charge carriers are small and the dielectric constant is high [1]. To give examples, the Bohr exciton radii in bulk CdS and CdSe are approximately 3 and 5 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites — the size dependence of the lowest excited electronic state. Journal of Chemical Physics 80: 4403–4409

    Article  CAS  Google Scholar 

  2. Bawendi MG, Steigerwald ML, Brus LE (1990) The quantum-mechanics of larger semiconductor clusters um dots). Annual Review of Physical Chemistry 41: 477–496

    CAS  Google Scholar 

  3. Efros AL, Rosen M, Kuno M, Nirmal M, Norris DJ, Bawendi M (1996) Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Physical Review B 54: 4843–4856

    Article  CAS  Google Scholar 

  4. Efros AL, Efros AL (1982) Interband absorption of light in a semiconductor sphere. Soviet Physics Semiconductors-USSR 16: 772–775

    Google Scholar 

  5. Henglein A (1982) Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueoussolution. Berichte der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 86: 301–305

    CAS  Google Scholar 

  6. Rossetti R, Brus L (1982) Electron-hole recombination emission as a probe of surface-chemistry in aqueous cds colloids. Journal of Physical Chemistry 86: 4470–4472

    Article  CAS  Google Scholar 

  7. Rossetti R, Nakahara S, Brus LE (1983) Quantum size effects in the redox potentials, resonance Raman-spectra, and electronic-spectra of CdS crystallites in aqueous-solution. Journal of Chemical Physics 79: 1086–1088

    Article  CAS  Google Scholar 

  8. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly mono-disperse CdE (E = S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society 115: 8706–8715

    Article  CAS  Google Scholar 

  9. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science 30: 545–610

    Article  CAS  Google Scholar 

  10. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437: 664–670

    Article  CAS  Google Scholar 

  11. Green M (2005) Organometallic based strategies for metal nanocrystal synthesis. Chemical Communications 24: 3002–3011

    Article  CAS  Google Scholar 

  12. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angewandte Chemie-International Edition 46: 4630–4660

    Article  CAS  Google Scholar 

  13. Rogach AL, Talapin DV, Shevchenko EV, Kornowski A, Haase M, Weller H (2002) Organization of matter on different size scales: monodisperse nanocrystals and their superstructures. Advanced Functional Materials 12: 653–664

    Article  CAS  Google Scholar 

  14. Rogach AL, Franzl T, Klar TA, Feldmann J, Gaponik N, Lesnyak V et al (2007) Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. Journal of Physical Chemistry C 111: 14628–14637

    Article  CAS  Google Scholar 

  15. Pileni MP (1997) Nanosized particles made in colloidal assemblies. Langmuir 13: 3266–3276

    Article  CAS  Google Scholar 

  16. Wang X, Peng Q, Li YD (2007) Interface-mediated growth of monodispersed nanostructures. Accounts of Chemical Research 40: 635–643

    Article  CAS  Google Scholar 

  17. Biswas K, Rao CNR (2007) Use of ionic liquids in the synthesis of nanocrystals and nanorods of semiconducting metal chalcogenides. Chemistry-A European Journal 13: 6123–6129

    Article  CAS  Google Scholar 

  18. Shah PS, Hanrath T, Johnston KP, Korgel BA (2004) Nanocrystal and nanowire synthesis and dispersibility in supercritical fluids. Journal of Physical Chemistry B 108: 9574–9587

    Article  CAS  Google Scholar 

  19. Gaponenko SV (1998) Optical properties of semiconductor nanocrystals. Cambridge University Press, Cambridge (UK)

    Google Scholar 

  20. Norris DJ, Sacra A, Murray CB, Bawendi MG (1994) Measurement of the size-dependent hole spectrum in CdSe quantum dots. Physical Review Letters 72: 2612–2615

    Article  CAS  Google Scholar 

  21. Reiss P, Bleuse J (unpublished)

    Google Scholar 

  22. Ekimov AI, Hache F, Schanne-Klein MC, Ricard D, Flytzanis C, Kudryavtsev IA et al (1993) Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots — assignment of the 1st electronic-transitions. Journal of the Optical Society of America B-Optical Physics 10: 100–107

    Article  CAS  Google Scholar 

  23. Nirmal M, Norris DJ, Kuno M, Bawendi MG, Efros AL, Rosen M (1995) Observation of the dark exciton in CdSe quantum dots. Physical Review Letters 75: 3728–3731

    Article  CAS  Google Scholar 

  24. Mason MD, Credo GM, Weston KD, Buratto SK (1998) Luminescence of individual porous Si chromophores. Physical Review Letters 80: 5405–5408

    Article  CAS  Google Scholar 

  25. Pistol ME, Castrillo P, Hessman D, Prieto JA, Samuelson L (1999) Random telegraph noise in photoluminescence from individual self-assembled quantum dots. Physical Review B 59: 10725–10729

    Article  CAS  Google Scholar 

  26. Vanden Bout DA, Yip WT, Hu DH, Fu DK, Swager TM, Barbara PF (1997) Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules. Science 277: 1074–1077

    Article  Google Scholar 

  27. Xie XS, Trautman JK (1998) Optical studies of single molecules at room temperature. Annual Review of Physical Chemistry 49: 441–480

    Article  CAS  Google Scholar 

  28. Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388: 355–358

    Article  CAS  Google Scholar 

  29. Kuno M, Fromm DP, Hamann HF, Gallagher A, Nesbitt DJ (2000) Nonexponential “blinking” kinetics of single CdSe quantum dots: a universal power law behavior. Journal of Chemical Physics 112: 3117–3120

    Article  CAS  Google Scholar 

  30. Chepic DI, Efros AL, Ekimov AI, Vanov MG, Kharchenko VA, Kudriavtsev IA et al (1990) Auger ionization of semiconductor quantumdrops in a glassmatrix. Journal ofLuminescence 47: 113–127

    Article  Google Scholar 

  31. Empedocles S, Bawendi M (1999) Spectroscopy of single CdSe nanocrystallites. Accounts of Chemical Research 32: 389–396

    Article  CAS  Google Scholar 

  32. Neuhauser RG, Shimizu KT, Woo WK, Empedocles SA, Bawendi MG (2000) Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots. Physical Review Letters 85: 3301–3304

    Article  CAS  Google Scholar 

  33. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Letters 1(4): 207–211

    Article  CAS  Google Scholar 

  34. Munro AM, Plante IJL, Ng MS, Ginger DS (2007) Quantitative study of the effects of surface ligand concentration on CdSe nanocrystal photoluminescence. Journal of Physical Chemistry C 111: 6220–6227

    Article  CAS  Google Scholar 

  35. Jang E, Jun S, Chung YS, Pu LS (2004) Surface treatment to enhance the quantum efficiency of semiconductor nanocrystals. Journal of Physical Chemistry B 108: 4597–4600

    Article  CAS  Google Scholar 

  36. Mićić OI, Cheong HM, Fu H, Zunger A, Sprague JR, Mascarenhas A, Nozik AJ (1997) Size-dependent spectroscopy of InP quantum dots. Journal of Physical Chemistry B 101(25): 4904–4912

    Article  Google Scholar 

  37. Talapin DV, Gaponik N, Borchert H, Rogach AL, Haase M, Weller H (2002) Etching of colloidal InP nanocrystals with fluorides: photochemical nature of the process resulting in high photoluminescence efficiency. Journal of Physical Chemistry B 106(49): 12659–12663

    Article  CAS  Google Scholar 

  38. Yeh CY, Lu ZW, Froyen S, Zunger A (1992) Zinc-blende-wurtzite polytypism in semiconductors. Physical Review B 46: 10086–10097

    Article  CAS  Google Scholar 

  39. Jacobs K, Wickham J, Alivisatos AP (2002) Threshold size for ambient metastability of rocksalt CdSe nanocrystals. Journal of Physical Chemistry B 106: 3759–3762

    Article  CAS  Google Scholar 

  40. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. Journal of Physical Chemistry 100: 468–471

    Article  CAS  Google Scholar 

  41. Dabbousi BO, Rodriguez Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R et al (1997) (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry B 101: 9463–9475

    Article  CAS  Google Scholar 

  42. Peng XG, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. Journal of the American Chemical Society 119: 7019–7029

    Article  CAS  Google Scholar 

  43. Wei SH, Zunger A (1998) Calculated natural band offsets of all II-VI and Ill-V semiconductors: chemical trends and the role of cation d orbitals. Applied Physics Letters 72: 2011–2013

    Article  CAS  Google Scholar 

  44. Fojtik A, Weller H, Koch U, Henglein A (1984) Photo-chemistry of colloidal metal sulfides. 8. Photophysics of extremely small CdS particles — Q-state CdS and magic agglomeration numbers. Berichte der Bunsen-Gesellschaft für Physikalische Chemie-Physical Chemistry Chemical Physics 88: 969–977

    CAS  Google Scholar 

  45. Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. Journal of the American Chemical Society 109: 5649–5655

    Article  CAS  Google Scholar 

  46. Lianos P, Thomas JK (1986) Cadmium-sulfide of small dimensions produced in inverted micelles. Chemical Physics Letters 125: 299–302

    Article  CAS  Google Scholar 

  47. Rogach A, Kershaw S, Burt M, Harrison M, Kornowski A, Eychmüller A et al (1999) Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence. Advanced Materials 11: 552–556

    Article  CAS  Google Scholar 

  48. Harrison MT, Kershaw SV, Rogach AL, Kornowski A, Eychmüller A, Weller H (2000) Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals. Advanced Materials 12: 123–125

    Article  CAS  Google Scholar 

  49. Kuno M, Higginson KA, Qadri SB, Yousuf M, Lee SH, Davis BL, Mattoussi H (2003) Molecular clusters of binary and ternary mercury chalcogenides: colloidal synthesis, characterization, and optical spectra. Journal of Physical Chemistry B 107: 5758–5767

    Article  CAS  Google Scholar 

  50. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society 72: 4847–4854

    Article  CAS  Google Scholar 

  51. de Mello Donegá C, Liljeroth P, Vanmaekelbergh D (2005) Physicochemical evaluation of the hotinjection method, a synthesis route for monodisperse nanocrystals. Small 1: 1152–1162

    Article  CAS  Google Scholar 

  52. Ostwald W (1901) Z Physical Chemistry 37: 385

    Google Scholar 

  53. Voorhees PW (1985) The theory of Ostwald ripening. Journal of Statistical Physics 38: 231–252

    Article  Google Scholar 

  54. Reiss H (1951) The growth of uniform colloidal dispersions. Journal of Chemical Physics 19: 482–487

    Article  CAS  Google Scholar 

  55. Sugimoto T (1987) Preparation of monodispersed colloidal particles. Advances in Colloid and Interface Science 28: 65–108

    Article  CAS  Google Scholar 

  56. Sugimoto T, Shiba F (1999) A new approach to interfacial energy. 3. Formulation of the absolute value of the solid-liquid interfacial energy and experimental collation to silver halide systems. Journal of Physical Chemistry B 103: 3607–3615

    Article  CAS  Google Scholar 

  57. Peng XG, Wickham J, Alivisatos AP (1998) Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. Journal of the American Chemical Society 120: 5343–5344

    Article  CAS  Google Scholar 

  58. Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society 123: 183–184

    Article  CAS  Google Scholar 

  59. Qu L, Peng ZA, Peng X (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Letters 1: 333–336

    Article  CAS  Google Scholar 

  60. YuW, Peng X (2002) Formation of high quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angewandte Chemie-International Edition 41: 2368–2371

    Article  Google Scholar 

  61. Liu HT, Owen JS, Alivisatos AP (2007) Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. Journal of the American Chemical Society 129: 305–312

    Article  CAS  Google Scholar 

  62. Chen XB, Lou YB, Samia AC, Burda C (2003) Coherency strain effects on the optical response of core/shell heteronanostructures. Nano Letters 3: 799–803

    Article  CAS  Google Scholar 

  63. Madelung O, Schulz M, Weiss H (1982) Landolt-Börnstein: numerial data and functional relationships in science and technology, new series, group III: crystal and solid state physics, vol. III/17b. Springer, Berlin

    Google Scholar 

  64. Singh J (1993) Physics of semiconductors and their heterostructures. McGraw-Hill, New York

    Google Scholar 

  65. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials 15: 2854–2860

    Article  CAS  Google Scholar 

  66. Li JJ, Wang YA, Guo WZ, Keay JC, Mishima TD, Johnson MB et al (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. Journal of the American Chemical Society 125: 12567–12575

    Article  CAS  Google Scholar 

  67. Talapin DV, Rogach AL, Shevchenko EV, Kornowski A, Haase M, Weller H (2002) Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. Journal of the American Chemical Society 124: 5782–5790

    Article  CAS  Google Scholar 

  68. Wu DG, Kordesch ME, Van Patten PG (2005) A new class of capping ligands for CdSe nanocrystal synthesis. Chemistry of Materials 17: 6436–6441

    Article  CAS  Google Scholar 

  69. Yang YA, Wu H, Williams KR, Cao YC (2005) Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angewandte Chemie-International Edition 44(41): 6712–6715

    Article  CAS  Google Scholar 

  70. Jasieniak J, Bullen C, van Embden J, Mulvaney P (2005) Phosphine-free synthesis of CdSe nanocrystals. Journal of Physical Chemistry B 109: 20665–20668

    Article  CAS  Google Scholar 

  71. Sapra S, Rogach AL, Feldmann J (2006) Phoshine-free synthesis of monodisperse CdSe nanocrystals in olive oil. Journal of Materials Chemistry 16: 3391–3395

    Article  CAS  Google Scholar 

  72. Pradhan N, Reifsnyder D, Xie RG, Aldana J, Peng XG (2007) Surface ligand dynamics in growth of nanocrystals. Journal of the American Chemical Society 129: 9500–9509

    Article  CAS  Google Scholar 

  73. Cao YC, Wang JH (2004) One-pot synthesis of high-quality zinc-blende CdS nanocrystals. Journal of the American Chemical Society 126: 14336–14337

    Article  CAS  Google Scholar 

  74. Pradhan N, Efrima S (2003) Single-precursor, one-pot versatile synthesis under near ambient conditions of tunable, single and dual band fluorescing metal sulfide nanoparticles. Journal of the American Chemical Society 125: 2050–2051

    Article  CAS  Google Scholar 

  75. Pradhan N, Katz B, Efrima S (2003) Synthesis of high-quality metal sulfide nanoparticles fromalkyl xanthate single precursors in alkylamine solvents. Journal of Physical Chemistry B 107:13843–13854

    Article  CAS  Google Scholar 

  76. Joo J, Na HB, Yu T, Yu JH, Kim YW, Wu FX, Zhang JZ, Hyeon T (2003) Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. Journal of the American Chemical Society 125: 11100–11105

    Article  CAS  Google Scholar 

  77. Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H (2001) A novel organometallic synthesis of highly luminescent CdTe nanocrystals. Journal of Physical Chemistry B 105: 2260–2263

    Article  CAS  Google Scholar 

  78. Yu WW, Wang YA, Peng X (2003) Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chemistry of Materials 15(22): 4300–4308

    Article  CAS  Google Scholar 

  79. Kloper V, Osovsky R, Kolny-Olesiak J, Sashchiuk A, Lifshitz E (2007) The growth of colloidal cadmium telluride nanocrystal quantum dots in the presence of Cd-0 nanoparticles. Journal of Physical Chemistry C 111: 10336–10341

    Article  CAS  Google Scholar 

  80. Li LS, Pradhan N, Wang Y, Peng X (2004) High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Letters 4(11): 2261–2264

    Article  CAS  Google Scholar 

  81. Yu JH, Joo J, Park HM, Baik SI, Kim YW, Kim SC, Hyeon T (2005) Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. Journal of the American Chemical Society 127: 5662–5670

    Article  CAS  Google Scholar 

  82. Hines MA, Guyot-Sionnest P (1998) Bright UV-blue luminescent colloidal ZnSe nanocrystals. Journal of Physical Chemistry B 102(19): 3655–3657

    Article  CAS  Google Scholar 

  83. Reiss P, Quemard G, Carayon S, Bleuse J, Chandezon C, Pron A (2004) Luminescent ZnSe nanocrystals of high color purity. Materials Chemistry and Physics 84: 10–13

    Article  CAS  Google Scholar 

  84. Xie R, Zhong X, Basché T (2005) Synthesis, characterization, and spectroscopy of type-II core/shell semiconductor nanocrystals with ZnTe cores. Advanced Materials 17: 2741–2746

    Article  CAS  Google Scholar 

  85. Green M, Wakefield G, Dobson PJ (2003) A simple metalorganic route to organically passivated mercury telluride nanocrystals. Journal of Materials Chemistry 13: 1076–1078

    Article  CAS  Google Scholar 

  86. Zhong X, Zhang Z, Liu S, Han M, Knoll W (2004) Embryonic nuclei-induced alloying process for the reproducible synthesis of blue-emitting ZnxCd1−x Se nanocrystals with long-time thermal stability in size distribution and emission wavelength. Journal of Physical Chemistry B 108(40):15552–15559

    Article  CAS  Google Scholar 

  87. Steckel JS, Snee P, Coe-Sullivan S, Zimmer JR, Halpert JE, Anikeeva P et al (2006) Colorsaturated green-emitting QD-LEDs. Angewandte Chemie-International Edition 45: 5796–5799

    Article  CAS  Google Scholar 

  88. Protière M, Reiss P (2007) Highly luminescent Cd1−x ZnxSe/ZnS core shell nanocrystals emitting in the blue-green spectral range. Small 3: 399–403

    Article  CAS  Google Scholar 

  89. Zhong X, Feng Y, Knoll W, Han M (2003) Alloyed ZnxCd1−x S nanocrystals with highly narrow luminescence spectral width. Journal of the American Chemical Society 125(44): 13559–13563

    Article  CAS  Google Scholar 

  90. Bailey RE, Nie S (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. Journal of American Chemical Society 125(23): 7100–7106

    Article  CAS  Google Scholar 

  91. Pradhan N, Reifsnyder D, Xie R, Aldana J, Peng X (2007) Surface ligand dynamics in growth of nanocrystals. Journal of American Chemical Society 129: 9500–9509

    Article  CAS  Google Scholar 

  92. Chen HS, Lo B, Hwang JY, Chang GY, Chen CM, Tasi SJ et al (2004) Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO. Journal of Physical Chemistry B 108:17119–17123

    Article  CAS  Google Scholar 

  93. Bernard JE, Zunger A(1986) Optical bowing in zinc chalcogenide semiconductor alloys. Physical Review B 34: 5992–5995

    Article  CAS  Google Scholar 

  94. Bernard JE, Zunger A (1987) Electronic-structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys. Physical Review B 36: 3199–3228

    Article  CAS  Google Scholar 

  95. Al-Salim N, Young AG, Tilley RD, McQuillan AJ, Xia J (2007) Synthesis of CdSeS nanocrystals in coordinating and noncoordinating solvents: solvent.s role in evolution of the optical and structural properties. Chemistry of Materials 19: 5185–5193

    Article  CAS  Google Scholar 

  96. Furdyna JK (1988) Diluted magnetic semiconductors. Journal of Applied Physics 64: R29–R64

    Article  CAS  Google Scholar 

  97. Oczkiewicz B, Twardowski A, Demianiuk M (1987) Intra-manganese absorption and luminescence in Zn1−x MnxSe semimagnetic semiconductor. Solid State Communications 64:107–111

    Article  CAS  Google Scholar 

  98. Xue J, Ye Y, Medina F, Martinez L, Lopez-Rivera SA, Giriat W(1998) Temperature evolution of the 2.1 eV band in the Zn1−x MnxSe system for low concentration. Journal of Luminescence 78:173–178

    Article  CAS  Google Scholar 

  99. Norris DJ, Yao N, Charnock FT, Kennedy TA (2001) High-quality manganese-doped ZnSe nanocrystals. Nano Letters 1: 3–7

    Article  CAS  Google Scholar 

  100. Suyver JF, Wuister SF, Kelly JJ, Meijerink A (2000) Luminescence of nanocrystalline ZnSe: Mn2+. Physical Chemistry Chemical Physics 2: 5445–5448

    Article  CAS  Google Scholar 

  101. Norberg NS, Parks GL, Salley GM, Gamelin DR (2006) Giant excitonic Zeeman splittings in colloidal Co2+-doped ZnSe quantum dots. Journal of the American Chemical Society 128:13195–13203

    Article  CAS  Google Scholar 

  102. Dance IG, Choy A, Scudder ML (1984) Syntheses, properties, and molecular and crystal-structures of (Me4N)4 [S4Zn10(SPh)16] (Me4N)n[Se4Cd10(SPh)16] — molecular supertetrahedral fragments of the cubic metal chalcogenide lattice. Journal of the American Chemical Society 106: 6285–6295

    Article  CAS  Google Scholar 

  103. Archer PI, Santangelo SA, Gamelin DR (2007) Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): physical property dependence on dopant locale. Journal of the American Chemical Society 129: 9808–9818

    Article  CAS  Google Scholar 

  104. Erwin SC, Zu LJ, Haftel MI, Efros AL, Kennedy TA, Norris DJ (2005) Doping semiconductor nanocrystals. Nature 436: 91–94

    Article  CAS  Google Scholar 

  105. Pradhan N, Peng XG (2007) Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. Journal of the American Chemical Society 129: 3339–3347

    Article  CAS  Google Scholar 

  106. Pradhan N, Goorskey D, Thessing J, Peng XG(2005) An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. Journal of the American Chemical Society 127: 17586–17587

    Article  CAS  Google Scholar 

  107. Pradhan N, Battaglia DM, Liu YC, Peng XG (2007) Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Letters 7: 312–317

    Article  CAS  Google Scholar 

  108. Green M(2002) Solution routes to III–V semiconductor quantum dots. Current Opinion in Solid State & Materials Science 6: 355–363

    Google Scholar 

  109. Wells RL, Gladfelter WL (1997) Pathways to nanocrystalline III–V (13–15) Compound Semiconductors. Journal of Cluster Science 8(2): 217–238

    Article  CAS  Google Scholar 

  110. Mićić OI, Curtis CJ, Jones KM, Sprague JR, Nozik AJ (1994) Synthesis and characterization of InP quantum dots. Journal of Physical Chemistry 98: 4966–4969

    Article  Google Scholar 

  111. Guzelian AA, Katari JEB, Kadavanich AV, Banin U, Hamad K, Juban E, Alivisatos AP, Wolters RH, Arnold CC, Heath JR (1996) Synthesis of size-selected, surface-passivated InP nanocrystals. Journal of Physical Chemistry 100: 7212–7219

    Article  CAS  Google Scholar 

  112. Battaglia D, Peng XG (2002) Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Letters 2: 1027–1030

    Article  CAS  Google Scholar 

  113. Xu S, Kumar S, Nann T (2006) Rapid synthesis of high-quality InP nanocrystals. Journal of the American Chemical Society 128: 1054–1055

    Article  CAS  Google Scholar 

  114. Guzelian AA, Banin U, Kadavanich AV, Peng X, Alivisatos AP (1996) Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Applied Physics Letters 69:1432–1434

    Article  CAS  Google Scholar 

  115. Mićić OI, Sprague JR, Curtis CJ, Jones KM, Machol JL, Nozik AJ et al (1995) Synthesis and characterization of InP, GaP, and GaInP2 quantum dots. Journal of Physical Chemistry 99:7754–7759

    Article  Google Scholar 

  116. Kim YH, Jun YW, Jun BH, Lee SM, Cheon JW (2002) Sterically induced shape and crystalline phase control of GaP nanocrystals. Journal of the American Chemical Society 124: 13656–13657

    Article  CAS  Google Scholar 

  117. Furis M, Sahoo Y, MacRae DJ, Manciu FS, Cartwright AN, Prasad PN (2003) Surfactant-imposed interference in the optical characterization of GaP nanocrystals. Journal of Physical Chemistry B 107: 11622–11625

    Article  CAS  Google Scholar 

  118. Sardar K, Dan M, Schwenzer B, Rao CNR (2005) A simple single-source precursor route to the nanostructures of AIN, GaN and InN. Journal of Materials Chemistry 15: 2175–2177

    Article  CAS  Google Scholar 

  119. Green M, O’Brien P (2004) The synthesis of III–V semiconductor nanoparticles using indium and gallium diorganophosphides as single-molecular precursors. Journal of Materials Chemistry 14: 629–636

    Article  CAS  Google Scholar 

  120. Sargent EH (2005) Infrared quantum dots. Advanced Materials 17: 515–522

    Article  CAS  Google Scholar 

  121. Rogach AL, Eychmüller A, Hickey SG, Kershaw SV (2007) Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. Small 3: 536–557

    Article  CAS  Google Scholar 

  122. Murray CB, Sun SH, Gaschler W, Doyle H, Betley TA, Kagan CR (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM Journal of Research and Development 45: 47–56

    Article  CAS  Google Scholar 

  123. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287: 1989–1992

    Article  CAS  Google Scholar 

  124. Yu WW, Falkner JC, Shih BS, Colvin VL (2004) Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chemistry of Materials 16: 3318–3322

    Article  CAS  Google Scholar 

  125. Hines MA, Scholes GD (2003) Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Advanced Materials 15: 1844–1849

    Article  CAS  Google Scholar 

  126. Lu W, Fang J, Stokes KL, Lin J (2004) Shape evolution and assembly of monodisperse PbTe nanocrystals. Journal of the American Chemical Society 126: 11798–11799

    Article  CAS  Google Scholar 

  127. Murphy JE, Beard MC, Norman AG, Ahrenkiel SP, Johnson JC, Yu PR et al (2006) PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. Journal of the American Chemical Society 128: 3241–3247

    Article  CAS  Google Scholar 

  128. Houtepen AJ, Koole R, Vanmaekelbergh DL, Meeldijk J, Hickey SG (2006) The hidden role of acetate in the PbSe nanocrystal synthesis. Journal of the American Chemical Society 128:6792–6793

    Article  CAS  Google Scholar 

  129. Wehrenberg BL, Wang CJ, Guyot-Sionnest P (2002) Interband and intraband optical studies of PbSe colloidal quantum dots. Journal of Physical Chemistry B 106: 10634–10640

    Article  CAS  Google Scholar 

  130. Steckel JS, Coe-Sullivan S, Bulovic V, Bawendi MG (2003) 1.3 µm to 1.55 µm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Advanced Materials 15(21): 1862–1866

    Article  CAS  Google Scholar 

  131. Pietryga JM, Schaller RD, Werder D, Stewart MH, Klimov VI, Hollingsworth JA (2004) Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. Journal of the American Chemical Society 126: 11752–11753

    Article  CAS  Google Scholar 

  132. Baek IC, Il Seok S, Pramanik NC, Jana S, Lim MA, Ahn BY et al (2007) Ligand-dependent particle size control of PbSe quantum dots. Journal of Colloid and Interface Science 310: 163–166

    Article  CAS  Google Scholar 

  133. Sashchiuk A, Amirav L, Bashouti M, Krueger M, Sivan U, Lifshitz E (2004) PbSe nanocrystal assemblies: synthesis and structural, optical, and electrical characterization. Nano Letters 4:159–165

    Article  CAS  Google Scholar 

  134. Nairn JJ, Shapiro PJ, Twamley B, Pounds T, von Wandruszka R, Fletcher TR et al (2006) Preparation of ultrafine chalcopyrite nanoparticles via the photochemical decomposition of molecular single-source precursors. Nano Letters 6: 1218–1223

    Article  CAS  Google Scholar 

  135. Czekelius C, Hilgendorff M, Spanhel L, Bedja I, Lerch M, Müller G et al (1999) A simple colloidal route to nanocrystalline ZnO/CuInS2 bilayers. Advanced Materials 11: 643–646

    Article  CAS  Google Scholar 

  136. Banger KK, Jin MHC, Harris JD, Fanwick PE, Hepp AF (2003) A new facile route for the preparation of single-source precursors for bulk, thin-film, and nanocrystallite I–III–VI semiconductors. Inorganic Chemistry 42: 7713–7715

    Article  CAS  Google Scholar 

  137. Gurinowich LI, Gurin VS, Ivanov VA, Molochko AP, Solovei NP (1998) Optical properties of CuInS2 nanoparticles in the region of the fundamental absorption edge. Journal of Applied Spectroscopy 63(3): 401–407

    Article  Google Scholar 

  138. Wakita K, Fujita F, Yamamoto N (2001) Photoluminescence excitation spectra of CuInS2 crystals. Journal of Applied Physics 90: 1292–1296

    Article  CAS  Google Scholar 

  139. Castro SL, Bailey SG, Raffaelle RP, Banger KK, Hepp AF (2004) Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor. Journal of Physical Chemistry B 108: 12429–12435

    Article  CAS  Google Scholar 

  140. Castro SL, Bailey SG, Raffaelle RP, Banger KK, Hepp AF (2003) Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors. Chemistry of Materials 15: 3142–3147

    Article  CAS  Google Scholar 

  141. Choi SH, Kim EG, Hyeon T (2006) One-pot synthesis of copper-indium sulfide nanocrystal heterostructures with acorn, bottle, and larva shapes. Journal of the American Chemical Society 128: 2520–2521

    Article  CAS  Google Scholar 

  142. Nakamura H, Kato W, Uehara M, Nose K, Omata T, Otsuka-Yao-Matsuo S et al (2006) Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system. Chemistry of Materials 18: 3330–3335

    Article  CAS  Google Scholar 

  143. Torimoto T, Adachi T, Okazaki K, Sakuraoka M, Shibayama T, Ohtani B et al (2007) Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore. Journal of the American Chemical Society 129: 12388–12389

    Article  CAS  Google Scholar 

  144. Malik MA, O’Brien P, Revaprasadu N (1999) A novel route for the preparation of CuSe and CuInSe2 nanoparticles. Advanced Materials 11: 1441–1444

    Article  CAS  Google Scholar 

  145. Zhong HZ, Li YC, Ye MF, Zhu ZZ, Zhou Y, Yang CH et al (2007) A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent. Nanotechnology 18: 025602

    Article  CAS  Google Scholar 

  146. English DS, Pell LE, Yu ZH, Barbara PF, Korgel BA (2002) Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Letters 2:681–685

    Article  CAS  Google Scholar 

  147. Holmes JD, Ziegler KJ, Doty RC, Pell LE, Johnston KP, Korgel BA (2001) Highly luminescent silicon nanocrystals with discrete optical transitions. Journal of the American Chemical Society 123: 3743–3748

    Article  CAS  Google Scholar 

  148. Hanrath T, Korgel BA (2003) Supercritical fluid—liquid—solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Advanced Materials 15: 437–440

    Article  CAS  Google Scholar 

  149. Pell LE, Schricker AD, Mikulec FV, Korgel BA (2004) Synthesis of amorphous silicon colloids by trisilane thermolysis in high temperature supercritical solvents. Langmuir 20: 6546–6548

    Article  CAS  Google Scholar 

  150. Tilley RD, Warner JH, Yamamoto K, Matsui I, Fujimori H (2005) Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. Chemical Communications 1833–1835

    Google Scholar 

  151. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005)Water-soluble photoluminescent silicon quantum dots. Angewandte Chemie-International Edition 44: 4550–4554

    Article  CAS  Google Scholar 

  152. Taylor BR, Kauzlarich SM, Delgado GR, Lee HWH (1999) Solution synthesis and characterization of quantum confined Ge nanoparticles. Chemistry of Materials 11: 2493–2500

    Article  CAS  Google Scholar 

  153. Yang CS, Bley RA, Kauzlarich SM, Lee HWH, Delgado GR (1999) Synthesis of alkyl-terminated silicon nanoclusters by a solution route. Journal of the American Chemical Society 121:5191–5195

    Article  CAS  Google Scholar 

  154. Heath JR, Shiang JJ, Alivisatos AP (1994) Germanium quantum dots — optical properties and synthesis. Journal of Chemical Physics 101: 1607–1615

    Article  CAS  Google Scholar 

  155. Mokari T, Banin U (2003) Synthesis and properties of CdSe/ZnS core/shell nanorods. Chemistry of Materials 15: 3955–3960

    Article  CAS  Google Scholar 

  156. Kudera S, Zanella M, Giannini C, Rizzo A, Li YQ, Gigli G, Cingolani R, Ciccarella G, Spahl W, Parak WJ, Manna L (2007) Sequential growth of magic-size CdSe nanocrystals. Advanced Materials 19: 548–552

    Article  CAS  Google Scholar 

  157. Jun S, Jang E (2005) Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence. Chemical Communications 36: 4616–4618

    Article  CAS  Google Scholar 

  158. Wang S, Jarrett BR, Kauzlarich SM, Louie AY (2007) Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. Journal of the American Chemical Society 129: 3848–3856

    Article  CAS  Google Scholar 

  159. Revaprasadu N, Malik MA, O’Brien P, Wakefield G (1999) A simple route to synthesise nanodimensional CdSe-CdS core-shell structures from single molecule precursors. Chemical Communications 1573–1574

    Google Scholar 

  160. Malik MA, O’Brien P, Revaprasadu N (2002) A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chemistry of Materials 14: 2004–2010

    Article  CAS  Google Scholar 

  161. Mekis I, Talapin DV, Kornowski A, Haase M, Weller H (2003) One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and “greener” chemical approaches. Journal of Physical Chemistry B 107: 7454–7462

    Article  CAS  Google Scholar 

  162. Pan DC, Wang Q, Jiang SC, Ji XL, An LJ (2005) Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core-shell nanocrystals via a novel two-phase thermal approach. Advanced Materials 17: 176–179

    Article  Google Scholar 

  163. Danek M, Jensen KF, Murray CB, Bawendi MG (1996) Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. Chemistry of Materials 8: 173–180

    Article  CAS  Google Scholar 

  164. Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Letters 2: 781–784

    Article  CAS  Google Scholar 

  165. Lee YJ, Kim TG, Sung YM (2006) Lattice distortion and luminescence of CdSe/ZnSe nanocrystals. Nanotechnology 17: 3539–3542

    Article  CAS  Google Scholar 

  166. Sung YM, Park KS, Lee YJ, Kim TG (2007) Ripening kinetics of CdSe/ZnSe core/shell nanocrystals. Journal of Physical Chemistry C 111: 1239–1242

    Google Scholar 

  167. Steckel JS, Zimmer JP, Coe-Sullivan S, Stott NE, Bulovic V, Bawendi MG (2004) Blue luminescence from (CdS)ZnS core-shell nanocrystals. Angewandte Chemie-International Edition 43: 2154–2158

    Article  CAS  Google Scholar 

  168. Protière M, Reiss P (2006) Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission. Nanoscale Research Letters 1: 62–67

    Article  CAS  Google Scholar 

  169. Yang YA, Chen O, Angerhofer A, Cao YC (2006) Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. Journal of the American Chemical Society 128: 12428–12429

    Article  CAS  Google Scholar 

  170. Lomascolo M, Creti A, Leo G, Vasanelli L, Manna L (2003) Exciton relaxation processes in colloidal core/shell ZnSe/ZnS nanocrystals. Applied Physics Letters 82: 418–420

    Article  CAS  Google Scholar 

  171. Chen HS, Lo B, Hwang JY, Chang GY, Chen CM, Tasi SJ et al (2004) Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO. Journal of Physical Chemistry B108:17119–17123

    Google Scholar 

  172. Tsay JM, Pflughoefft M, Bentolila LA, Weiss S (2004) Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals. Journal of the American Chemical Society 126: 1926–1927

    Article  CAS  Google Scholar 

  173. Haubold S, Haase M, Kornowski A, Weller H (2001) Strongly luminescent InP/ZnS core-shell nanoparticles. Chem Phys Chem 2: 331–334

    CAS  Google Scholar 

  174. Mićić OI, Smith BB, Nozik AJ (2000) Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: experiment and theory. Journal of Physical Chemistry B 104: 12149–12156

    Google Scholar 

  175. Cao YW, Banin U (1999) Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angewandte Chemie-International Edition 38: 3692–3694

    Article  CAS  Google Scholar 

  176. Cao YW, Banin U (2000) Growth and properties of semiconductor core/shell nanocrystals with InAs cores. Journal of the American Chemical Society 122: 9692–9702

    Article  CAS  Google Scholar 

  177. Kim SW, Zimmer JP, Ohnishi S, Tracy JB, Frangioni JV, Bawendi MG (2005) Engineering InAsxP1−x /InP/ZnSe III–V alloyed core/shell quantum dots for the near-infrared. Journal of the American Chemical Society 127: 10526–10532

    Article  CAS  Google Scholar 

  178. Sashchiuk A, Langof L, Chaim R, Lifshitz E (2002) Synthesis and characterization of PbSe and PbSe/PbS core-shell colloidal nanocrystals. Journal of Crystal Growth 240: 431–438

    Article  CAS  Google Scholar 

  179. Brumer M, Kigel A, Amirav L, Sashchiuk A, Solomesch O, Tessler N et al (2005) PbSe/PbS and PbSe/PbSexS1−x core/shell nanoparticles. Advanced Functional Materials 15: 1111–1116

    Article  CAS  Google Scholar 

  180. Lifshitz E, Brumer M, Kigel A, Sashchiuk A, Bashouti M, Sirota M et al (2006) Stable PbSe/PbS and PbSe/PbSexS1−x core-shell nanocrystal quantum dots and their applications. Journal of Physical Chemistry B 110: 25356–25365

    Google Scholar 

  181. Xu J, Cui DH, Zhu T, Paradee G, Liang ZQ, Wang Q et al (2006) Synthesis and surface modification of PbSe/PbS core-shell nanocrystals for potential device applications. Nanotechnology 17: 5428–5434

    Article  CAS  Google Scholar 

  182. Kim S, Fisher B, Eisler HJ, Bawendi M (2003) Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. Journal of the American Chemical Society 125:11466–11467

    Article  CAS  Google Scholar 

  183. Yu K, Zaman B, Romanova S, Wang DS, Ripmeester JA (2005) Sequential synthesis of type II colloidal CdTe/CdSe core-shell nanocrystals. Small 1: 332–338

    Article  CAS  Google Scholar 

  184. Chen CY, Cheng CT, Yu JK, Pu SC, Cheng YM, Chou PT et al (2004) Spectroscopy and femtosecond dynamics of type-II CdSe/ZnTe core-shell semiconductor synthesized via the CdO precursor. Journal of Physical Chemistry B 108: 10687–10691

    Google Scholar 

  185. Balet LP, Ivanov SA, Piryatinski A, Achermann M, Klimov VI (2004) Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes. Nano Letters 4: 1485–1488

    Article  CAS  Google Scholar 

  186. Zhong XH, Xie RG, Zhang Y, Basché T, Knoll W (2005) High-quality violet-to red-emitting ZnSe/CdSe core/shell nanocrystals. Chemistry of Materials 17: 4038–4042

    Article  CAS  Google Scholar 

  187. Xie RG, Zhong XH, Basché T (2005) Synthesis, characterization, and spectroscopy of type-II core/shell semiconductor nanocrystals with ZnTe cores. Advanced Materials 17: 2741–2744

    Article  CAS  Google Scholar 

  188. Milliron DJ, Hughes SM, Cui Y, Manna L, Li JB, Wang LW, Alivisatos AP (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430: 190–195

    Article  CAS  Google Scholar 

  189. Xie RG, Kolb U, Basché T (2006) Design and synthesis of colloidal nanocrystal heterostructures with tetrapod morphology. Small 2: 1454–1457

    Article  CAS  Google Scholar 

  190. Burda C, Chen XB, Narayanan R, El-Sayed MA(2005) Chemistry and properties of nanocrystals of different shapes. Chemical Reviews 105: 1025–1102

    Article  CAS  Google Scholar 

  191. Kumar S, Nann T (2006) Shape control of II-VI semiconductor nanomateriats. Small 2: 316–329

    Article  CAS  Google Scholar 

  192. Carbone L, Nobile C, De Giorg M, Sala FD, Morello G, Pompa P et al (2007) Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Letters 7: 2942–2950

    Article  CAS  Google Scholar 

  193. Talapin DV, Nelson JH, Shevchenko EV, Aloni S, Sadtler B, Alivisatos AP (2007) Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Letters 7: 2951–2959

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Reiss, P. (2008). Synthesis of semiconductor nanocrystals in organic solvents. In: Rogach, A.L. (eds) Semiconductor Nanocrystal Quantum Dots. Springer, Vienna. https://doi.org/10.1007/978-3-211-75237-1_2

Download citation

Publish with us

Policies and ethics