Music that works pp 109-117

The audio-vocal system in song and speech development

  • Wilfried Gruhn

Abstract

Every young child learns how to speak. However, often music teachers complain that children cannot sing. Both modes — speaking and singing — result in activities of the phonatory system, use the same vocal tract and share the same neural circuits. Therefore, it is manifest to conclude that singing and speaking are based on many commonalities in perception and production.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann H, Wildgruber D, Riecker A (2006) ’singing in the (b)rain’: cerebral correlates. In: Altenmueller E, Wiesendanger M, Kesselring J (eds.) Music, Motor Control and the Brain, pp. 205–221. Oxford, Oxford University Press.Google Scholar
  2. Arbib MA (2005) From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. Behavioral brain science 28(2), 105–124; 125–167Google Scholar
  3. Bialystok E, Martin MM (2004) Attention and inhibition in bilingual children: evidence from the dimensional change card sort task. Developmental Science 7(3), 325–339CrossRefPubMedGoogle Scholar
  4. Bialystok E, Craik FIM, Ryan J (2006) Executive control in a modified antisaccade task: effects of aging and bilingualism. Journal of Experimental Psychology: Learning, Memory, and Cognition 32(6), 1342–1354CrossRefGoogle Scholar
  5. Bialystok E, Craik F, Klein R, Viswanathan M (2004) Bilingualism, aging, and cognitive control: evidence from the Simon task. Psychology and Aging 19(2), 290–303CrossRefPubMedGoogle Scholar
  6. Bialystok E, Craik F, Grady C, Chau W, Ishii R, Gunji A, Pantev C (2005) Effect of bilingualism on cognitive control in the Simon task: evidence from MEG. Neuroimage, 24, 40–49CrossRefPubMedGoogle Scholar
  7. Brainard MS, Doupe AJ (2002) What songbirds teach us about learning. Nature 417(6886)Google Scholar
  8. Brown S (2000) The ‘musilanguage’ model of music evolution. In: Wallin NL, Merker B, Brown S (eds.) The Origins of Music, pp. 271–300. Cambridge MA, MIT PressGoogle Scholar
  9. Brown S (2007) Contagious heterophony: a new theory about the origins of music. Musicae Scientiae 11(1), 3–26Google Scholar
  10. Brown S, Martinez MJ, Hodges DA, Fox PT, Parsons LM (2004) The song system of the human brain. Cognitive Brain Research 20, 363–375CrossRefPubMedGoogle Scholar
  11. Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund, HJ, Rizzolatti G (2004) Neural circuits underlying imitation learning of hand actions. An event-related fMRI study. Neuron 42(2), 323–334CrossRefPubMedGoogle Scholar
  12. Bugos J, Ashley Y, Peddler W (2006) Enhanced information processing speed in musicians compared to nonmusicians. Paper presented at the ICMPC, BolognaGoogle Scholar
  13. Darwin C (1871/1981) The descent of man, and selection in relation to sex. Princeton: Princeton University PressGoogle Scholar
  14. Fitch WT (2000) The phonetic potential of nonhuman vocal tracts: comparative cineradiographic observations of vocalizing animals. Phonetica 57, 205–218CrossRefGoogle Scholar
  15. Fitch WT, Reby D (2001) The descended larynx is not uniquely human. Proceedings of The Royal Society London 268, 1669–1675CrossRefGoogle Scholar
  16. Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(2), 593–609CrossRefPubMedGoogle Scholar
  17. Gil-da-Costa R, Martin A, Lopes MA, Munoz M, Fritz JB, Braun AR (2006) Species-specific calls activate homologs on Broca’s and Wernicke’s areas in the macaque. Nature Neuroscience 9(8), 1064–1070CrossRefPubMedGoogle Scholar
  18. Gruhn W, Galley N, Kluth C (2003) Do mental speed and musical abilities interact? In: Avanzini GF, Minciacchi C, Lopez DL, Majno M (eds.) The Neurosciences and Music, Vol. 999, pp. 485–496. New York, Annals of the New York Academy of SciencesGoogle Scholar
  19. Gunji A, Ishii R, Chau W, Kakigi R, Pantev C (2007) Rhythmic brain activities related to singing in humans. Neuroimage 34(1), 426–434CrossRefPubMedGoogle Scholar
  20. Haesler S (2006) Also sprach der Zebrafink. Gehirn & Geist (12), 52–57Google Scholar
  21. Haesler S, Wada K, Nshdejan A, Morrisey EE, Lints T, Jarvis ED, Scharff C (2004) FoxP2 expression in avian vocal learners and non-learners. Journal of Neuroscience, 24(13), 3164–3175CrossRefPubMedGoogle Scholar
  22. Hutchison WD, Davis DD, Lozano AM, Tasker RR, Dostrovsky JO (1999) Pain-related neurons in the human cingulate cortex. Nature Neuroscience 2(5), 403–405CrossRefPubMedGoogle Scholar
  23. Koelsch S, Siebel WA (2005) Towards a neural basis of music perception. Trends in Cognitive Scienes 9(12), 578–584CrossRefGoogle Scholar
  24. Koelsch S, Kasper E, Sammler E, Schulze K, Gunter T, Friederici A (2004) Music, language and meaning: brain signature of semantic processing. Nature Neuroscience 7(3), 302–307CrossRefPubMedGoogle Scholar
  25. Kohler E, Keysers C, Umilta MA, Fogassi L, Gallese Vea, Rizzolatti G (2002) Hearing sounds, understanding actions: action representation in mirror neurons. Science 297(5582), 846CrossRefPubMedGoogle Scholar
  26. Lehr VT, Zeskind PS, Ofenstein JP, Cepeda E, Warrier I, Aranda JV (2007) Neonatal facial coding system scores and spectral characteristics of infant crying during newborn circumcision. The Clinical Journal of Pain 23(5), 417–424CrossRefPubMedGoogle Scholar
  27. Leimbrink K (2008) Die Entwicklung der präverbalen Interaktion. Eine Verhaltensbeobachtungsstudie an vier Säuglingen. Unpublished Diss. Phil., University, DortmundGoogle Scholar
  28. MacAndrew A (2007) FOXP2 and the evolution of language. www.evolutionpages.com/FOXP2_ language.htmGoogle Scholar
  29. Meltzoff AN (1988) Homo imitans. In: Zentall TR, Galef BG (eds.) Social learning: psychological and biological perspectives, pp. 319–342. Hillsdale, NJ: ErlbaumGoogle Scholar
  30. Meltzoff AN, Decety J (2003) What imitation tells us about social cognition: a rapprochment between developmental psychology and cognitive neuroscience. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 358(1431), 491–500CrossRefGoogle Scholar
  31. Merker B (2005) The conformal motive in birdsong, music, and language: an introduction. In: Avanzini SKG, Lopez L, Majno M (eds.) The Neurosciences and Music II, Vol. 1060, pp. 17–28. New York, Annals of the New York Academy of SciencesGoogle Scholar
  32. Merker B (2006) Ritual foundation of human uniqueness. In: Malloch S, Trevarthen C (eds.) Communicative Musicality. Oxford, Oxford University PressGoogle Scholar
  33. Ozdemir E, Norton A, Schlaug G (2006) Shared and distinct neural correlates of singing and speaking. Neuroimage 33(2), 628–635CrossRefPubMedGoogle Scholar
  34. Patel AD (2007) Language, music, and the brain: a resource-sharing framework. Paper presented at the Language and Music as Cognitive Systems, Cambridge, UKGoogle Scholar
  35. Pinker S (1994) The Language Instinct. New York, William Morrow & CoGoogle Scholar
  36. Rizzolatti G (1996) Premotor cortex and the recognition ofmotor actions. Cognitive Brain Research (3), 131–141Google Scholar
  37. Rizzolatti G, Leonardo, F, Gallese V (2006) Mirrors in the mind. Scientific American 295(5), 30–37CrossRefGoogle Scholar
  38. Wallin N, Merker B, Brown S (eds.) (2000) The Origins of Music. Cambridge MA, MIT PressGoogle Scholar
  39. Zeigler HP, Marler P (eds.) (2004) Behavioral Neurobiology of Birdsong, Vol. 1016. New York, Annals of the New York Academy of SciencesGoogle Scholar
  40. Zeskind P (2007) Infant crying and the synchrony of arousal. Paper presented at the Conference on the Evolution of Emotional Communication: from Sound in Nonhuman Mammals to Speech and Music in Man, HannoverGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2009

Authors and Affiliations

  • Wilfried Gruhn

There are no affiliations available

Personalised recommendations