Advertisement

Abstract

This chapter reviews the occurrence, structure, and reactivity of chlorophyll catabolites from vascular plants and from some microorganisms. In parallel, synthetic means for obtaining such tetrapyrrolic compounds are recapitulated. The available structural information on chlorophyll catabolites (1) has provided a basis for deriving much of the current insights into the biochemical pathways of chlorophyll breakdown in plants and for complementary plant-biological work, as has been reviewed elsewhere recently (see Scheme 1) (2, 3, 4, 5, 6).

Keywords

Oilseed Rape Senescent Leaf Chenopodium Album Chlorophyll Breakdown Meso Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kräutler B (2003) Chlorophyll Breakdown and Chlorophyll Catabolites. In: Kadish KM, Smith KM, Guilard R (eds.) The Porphyrin Handbook, Vol. 13, p. 183 Elsevier Science, OxfordGoogle Scholar
  2. 2.
    Kräutler B, Hörtensteiner S (2006) Chlorophyll Catabolites and the Biochemistry of Chlorophyll Breakdown. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds.) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, p. 237. Springer, Dordrecht, The NetherlandsGoogle Scholar
  3. 3.
    Matile P, Hörtensteiner S, Thomas H, Kräutler B (1996) Chlorophyll Breakdown in Senescent Leaves. Plant Physiol 112: 1403Google Scholar
  4. 4.
    Kräutler B, Matile P (1999) Solving the Riddle of Chlorophyll Breakdown. Acc Chem Res 32: 35CrossRefGoogle Scholar
  5. 5.
    Hörtensteiner S (2006) Chlorophyll Degradation During Senescence. Annu Rev Plant Biol 57: 55CrossRefGoogle Scholar
  6. 6.
    Dangl JL, Dietrich RA, Thomas H (2001) Senescence and Programmed Cell Death. In: Buchanan BB, Gruissem W, Jones RL (eds.) Biochemistry and Molecular Biology of Plants, p. 1044. Am Soc Plant Physiol, Rockville, MD, USAGoogle Scholar
  7. 7.
    Matile P (2000) Biochemistry of Indian Summer: Physiology of Autumnal Leaf Coloration. Exp Gerontol 35: 145CrossRefGoogle Scholar
  8. 8.
    Brown SB, Houghton JD, Hendry GAF (1991) Chlorophyll Breakdown. In: Scheer H (ed.) Chlorophylls, p. 465. CRC Press, Boca Raton, FL, USAGoogle Scholar
  9. 9.
    Matile P (1987) Senescence in Plants and Its Importance for Nitrogen-Metabolism. Chimia 41: 376Google Scholar
  10. 10.
    Kräutler B, Jaun B, Bortlik K, Schellenberg M, Matile P (1991) On the Enigma of Chlorophyll Degradation — The Constitution of a Secoporphinoid Catabolite. Angew Chem Int Ed 30: 1315.CrossRefGoogle Scholar
  11. 11.
    Scheer H (ed.) (1991) Chlorophylls. CRC Press, Boca Raton, FL, USAGoogle Scholar
  12. 12.
    Grimm B, Porra R, Rüdiger W, Scheer H (eds.) (2006) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. Springer, Dordrecht, The NetherlandsGoogle Scholar
  13. 13.
    Montforts FP, Glasenapp-Breiling M (2002) Naturally Occurring Cyclic Tetrapyrroles. In: Herz W, Falk H, Kirby GW (eds.) Progress in the Chemistry of Organic Natural Products, p. 84. Springer, WienGoogle Scholar
  14. 14.
    Beale SI, Weinstein JD (1991) Biochemistry and Regulation of Photosynthetic Pigment Formation in Plants and Algae. In: Jordan PM (ed.) Biosynthesis of Tetrapyrroles, p. 155. Elsevier Science, AmsterdamCrossRefGoogle Scholar
  15. 15.
    Rüdiger W (2003) The Last Step of Chlorophyll Synthesis. In: Kadish KM, Smith KM, Guilard R (eds.) The Porphyrin Handbook, Vol. 13, p. 71. Elsevier Science, AmsterdamGoogle Scholar
  16. 16.
    Bollivar DW (2003) Intermediate Steps in Chlorophyll Biosynthesis: Methylation and Cyclization. In: Kadish KM, Smith KM, Guilard R (eds.) The Porphyrin Handbook, Vol. 13, p. 49 Elsevier Science, AmsterdamGoogle Scholar
  17. 17.
    Ortiz de Montellano PR, Auclair K (2003) Heme Oxygenase Structure and Mechanism. In: Kadish KM, Smith KM, Guilard R (eds.) The Porphyrin Handbook, Vol. 12, p. 183. Academic Press, AmsterdamGoogle Scholar
  18. 18.
    Woodward RB, Skaric V (1961) A New Aspect of the Chemistry of Chlorins. J Am Chem Soc 83: 4676CrossRefGoogle Scholar
  19. 19.
    Brown SB, Smith KM, Bisset GMF, Troxler RF (1980) Mechanism of Photo-Oxidation of Bacteriochlorophyll-C Derivatives — A Possible Model for Natural Chlorophyll Breakdown. J Biol Chem 255: 8063Google Scholar
  20. 20.
    Nakamura H, Musicki B, Kishi Y, Shimomura O (1988) Structure of the Light Emitter in Krill (Euphausia pacifica) Bioluminescence. J Am Chem Soc 110: 2683CrossRefGoogle Scholar
  21. 21.
    Nakamura H, Kishi Y, Shimomura O, Morse D, Hastings JW (1989) Structure of Dinoflagellate Luciferin and Its Enzymatic and Nonenzymatic Air-Oxidation Products? J Am Chem Soc 111: 7607CrossRefGoogle Scholar
  22. 22.
    Matile P, Ginsburg S, Schellenberg M, Thomas H (1987) Catabolites of Chlorophyll in Senescent Leaves. J Plant Physiol 129: 219Google Scholar
  23. 23.
    Thomas H, Bortlik K, Rentsch D, Schellenberg M, Matile P (1989) Catabolism of Chlorophyll in vivo — Significance of Polar Chlorophyll Catabolites in a Non-Yellowing Senescence Mutant of Festuca pratensis Huds. New Phytol 111: 3CrossRefGoogle Scholar
  24. 24.
    Matile P, Ginsburg S, Schellenberg M, Thomas H (1988) Catabolites of Chlorophyll in Senescing Barley Leaves Are Localized in the Vacuoles of Mesophyll-Cells. Proc Natl Acad Sci USA 85: 9529CrossRefGoogle Scholar
  25. 25.
    Bortlik K, Peisker C, Matile P (1990) A Novel Type of Chlorophyll Catabolite in Senescent Barley Leaves. J Plant Physiol 136: 161Google Scholar
  26. 26.
    Peisker C, Thomas H, Keller F, Matile P (1990) Radiolabeling of Chlorophyll for Studies on Catabolism. J Plant Physiol 136: 544Google Scholar
  27. 27.
    Kräutler B, Jaun B, Amrein W, Bortlik K, Schellenberg M, Matile P (1992) Breakdown of Chlorophyll — Constitution of a Secoporphinoid Chlorophyll Catabolite Isolated from Senescent Barley Leaves. Plant Physiol Biochem 30: 333Google Scholar
  28. 28.
    Mendel G (1865) Versuche über Pflanzenhybriden. Verh Naturw Verein Brünn 4: 3Google Scholar
  29. 29.
    Armstead I, Donnison I, Aubry S, Harper J, Hörtensteiner S, James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A, Weeden N, Thomas H, King I (2007) Cross-species Identification of Mendel’s Locus. Science 315: 73CrossRefGoogle Scholar
  30. 30.
    Willstätter R, Stoll A (1913) Die Wirkungen der Chlorophyllase. Untersuchungen über Chlorophyll, p. 172. Julius Springer, BerlinGoogle Scholar
  31. 31.
    Spremulli L (2001) Protein synthesis, assembly and degradation. In: Buchanan BB, Gruissem W, Jones RL (eds.) Biochemistry and Molecular Biology of Plants, p. 412. Am. Soc. Plant Physiologists, Rockville, MD, USAGoogle Scholar
  32. 32.
    Matile P, Schellenberg M, Vicentini F (1997) Localization of Chlorophyllase in the Chloroplast Envelope. Planta 201: 96CrossRefGoogle Scholar
  33. 33.
    Hynninen PH (1991) Chemistry of Chlorophylls: Modifications. In: Scheer H (ed.) Chlorophylls, p. 145. CRC Press, Boca Raton, FL, USAGoogle Scholar
  34. 34.
    Bachmann A, Fernandez-Lopez J, Ginsburg S, Thomas H, Bouwkamp JC, Solomos T, Matile P (1994) Stay-Green Genotypes of Phaseolus vulgaris L. — Chloroplast Proteins and Chlorophyll Catabolites during Foliar Senescence. New Phytol 126: 593CrossRefGoogle Scholar
  35. 35.
    Peisker C, Düggelin T, Rentsch D, Matile P (1989) Phytol and the Breakdown of Chlorophyll in Senescent Leaves. J Plant Physiol 135: 428Google Scholar
  36. 36.
    Müller T, Moser S, Ongania KH, Pružinska A, Hörtensteiner S, Kräutler B (2006) A Divergent Path of Chlorophyll Breakdown in the Model Plant Arabidopsis thaliana. Chem BioChem 7: 40Google Scholar
  37. 37.
    Ito H, Tanaka Y, Tsuji H, Tanaka A (1993) Conversion of Chlorophyll b to Chlorophyll a by Isolated Cucumber Etioplasts. Arch Biochem Biophys 306: 148CrossRefGoogle Scholar
  38. 38.
    Ito H, Tanaka A (1996) Determination of the Activity of Chlorophyll b to Chlorophyll a Conversion During Greening of Etiolated Cucumber Cotyledons, by Using Pyrochlorophyllide b Plant Physiol Biochem 34: 35Google Scholar
  39. 39.
    Scheumann V, Schoch S, Rüdiger W (1999) Chlorophyll b Reduction During Senescence of Barley Seedlings. Planta 209: 364CrossRefGoogle Scholar
  40. 40.
    Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a Oxygenase (CAO) is Involved in Chlorophyll b Formation from Chlorophyll a. Proc Natl Acad Sci USA 95: 12719CrossRefGoogle Scholar
  41. 41.
    Hörtensteiner S, Vicentini F, Matile P (1995) Chlorophyll Breakdown in Senescent Cotyledons of Rape, Brassica napus L.—Enzymatic Cleavage of Phaeophorbide a in vitro. New Phytol 129: 237CrossRefGoogle Scholar
  42. 42.
    Folly P, Engel N (1999) Chlorophyll b to Chlorophyll a Conversion Precedes Chlorophyll Degradation in Hordeum vulgare L. J Biol Chem 274: 21811CrossRefGoogle Scholar
  43. 43.
    Shioi Y, Watanabe K, Takamiya K (1996) Enzymatic Conversion of Pheophorbide a to the Precursor of Pyropheophorbide a in Leaves of Chenopodium album. Plant Cell Physiol, 37: 1143Google Scholar
  44. 44.
    Langmeier M, Ginsburg S, Matile P, (1993) Chlorophyll Breakdown in Senescent Leaves — Demonstration of Mg-Dechelatase Activity. Physiol Plant 89: 347CrossRefGoogle Scholar
  45. 45.
    Schoch S, Scheer H, Schiff JA, Rüdiger W, Siegelman HW (1981) Pyropheophytin a Accompanies Pheophytin a in Darkened Light Grown Cells of Euglena. Z Naturf C J Biosci 36: 827Google Scholar
  46. 46.
    Shioi Y, Tatsumi Y, Shimokawa K (1991) Enzymatic Degradation of Chlorophyll in Chenopodium album. Plant Cell Physiol, 32: 87Google Scholar
  47. 47.
    Doi M, Inage T, Shioi Y (2001) Chlorophyll Degradation in a Chlamydomonas reinhardtii Mutant: An Accumulation of Pyropheophorbide a by Anaerobiosis. Plant Cell Physiol 42: 469CrossRefGoogle Scholar
  48. 48.
    Mühlecker W, Kräutler B (1996) Breakdown of Chlorophyll: Constitution of Nonfluorescing Chlorophyll-catabolites from Senescent Cotyledons of the Dicot Rape. Plant Physiol Biochem 34: 61Google Scholar
  49. 49.
    Iturraspe J, Moyano N, Frydman B (1995) A New 5-Formylbilinone as the Major Chlorophyll a Catabolite in Tree Senescent Leaves. J Org Chem 60: 6664CrossRefGoogle Scholar
  50. 50.
    Curty C, Engel N (1996) Chlorophyll Catabolism. 9. Detection, Isolation and Structure Elucidation of a Chlorophyll a Catabolite from Autumnal Senescent Leaves of Cercidiphyllum japonicum. Phytochem 42: 1531CrossRefGoogle Scholar
  51. 51.
    Oberhuber M, Berghold J, Mühlecker W, Hörtensteiner S, Kräutler B (2001) Chlorophyll Breakdown—On a Nonfluorescent Chlorophyll Catabolite from Spinach. Helv Chim Acta 84: 2615CrossRefGoogle Scholar
  52. 52.
    Berghold J, Breuker K, Oberhuber M, Hörtensteiner S, Kräutler B (2002) Chlorophyll Breakdown in Spinach: On the Structure of Five Nonfluorescent Chlorophyll Catabolites. Photosynth Res 74: 109CrossRefGoogle Scholar
  53. 53.
    Berghold J, Eichmüller C, Hörtensteiner S, Kräutler B (2004) Chlorophyll Breakdown in Tobacco: On the Structure of Two Nonfluorescent, Chlorophyll Catabolites. Chem Biodiv 1: 657CrossRefGoogle Scholar
  54. 54.
    Berghold J, Müller T, Ulrich M, Hörtensteiner S, Kräutler B (2006) Chlorophyll Breakdown in Maize: On the Structure of Two Nonfluorescent Chlorophyll Catabolites. Monatsh Chem 137: 751CrossRefGoogle Scholar
  55. 55.
    Müller T, Ulrich M, Ongania KH, Kräutler B (2007) Colorless and Nonfluorescent Chlorophyll Catabolites are Identified in Ripening Fruit and are Effective Antioxidants. Angew Chem Int Ed 46: 8699CrossRefGoogle Scholar
  56. 56.
    Oberhuber M, Berghold J, Breuker K, Hörtensteiner S, Kräutler B (2003) Breakdown of Chlorophyll: A Nonenzymatic Reaction Accounts for the Formation of the Colorless “Nonfluorescent” Chlorophyll Catabolites. Proc Natl Acad Sci USA 100: 6910CrossRefGoogle Scholar
  57. 57.
    Engel N, Jenny TA, Mooser V, Gossauer A (1991) Chlorophyll Catabolism in Chlorella protothecoides — Isolation and Structure Elucidation of a Red Bilin Derivative. FEBS Lett 293: 131CrossRefGoogle Scholar
  58. 58.
    Gossauer A, Engel N (1996) Chlorophyll Catabolism — Structures, Mechanisms, Conversions. J Photochem Photobiol B: Biol 32: 141CrossRefGoogle Scholar
  59. 59.
    Engel N, Curty C, Gossauer A (1996) Chlorophyll Catabolism in Chlorella protothecoides. 8. Facts and Artefacts. Plant Physiol Biochem 34: 77Google Scholar
  60. 60.
    Pružinska A, Tanner G, Aubry S, Anders I, Moser S, Müller T, Ongania K-H, Kräutler B, Youn J-Y, Liljegren SJ, Hörtensteiner S (2005) Chlorophyll Breakdown in Senescent Arabidopsis Leaves. Characterization of Chlorophyll Catabolites and of Chlorophyll Catabolic Enzymes Involved in the Degreening Reaction. Plant Physiol 139: 52CrossRefGoogle Scholar
  61. 61.
    Scheer H (1991) Structure and Occurrence of Chlorophylls. In: Scheer H (ed.) Chlorophylls, p. 3. CRC Press, Boca Raton, FL, USAGoogle Scholar
  62. 62.
    Mühlecker W, Ongania KH, Kräutler B, Matile P, Hörtensteiner S (1997) Tracking Down Chlorophyll Breakdown in Plants: Elucidation of the Constitution of a “Fluorescent” Chlorophyll Catabolite. Angew Chem Int Ed 36: 401CrossRefGoogle Scholar
  63. 63.
    Matile P, Schellenberg M, Peisker C (1992) Production and Release of a Chlorophyll Catabolite in Isolated Senescent Chloroplasts. Planta 187: 230CrossRefGoogle Scholar
  64. 64.
    Ginsburg S, Schellenberg M, Matile P (1994) Cleavage of Chlorophyll-Porphyrin — Requirement for Reduced Ferredoxin and Oxygen. Plant Physiol 105: 545Google Scholar
  65. 65.
    Matile P, Düggelin T, Schellenberg M, Rentsch D, Bortlik K, Peisker C, Thomas H (1989) How and Why Is Chlorophyll Broken down in Senescent Leaves. Plant Physiol Biochem 27: 595Google Scholar
  66. 66.
    Matile P, Kräutler B (1995) Wie und warum bauen Pflanzen das Chlorophyll ab? (How and Why Do Plants Decompose Chlorophyll? Molecular Fundamentals of Leaf Yellowing). Chemie in unserer Zeit 29: 298CrossRefGoogle Scholar
  67. 67.
    Mühlecker W, Kräutler B, Moser D, Matile P, Hörtensteiner S (2000) Breakdown of Chlorophyll: A Fluorescent Chlorophyll Catabolite from Sweet Pepper (Capsicum annuum). Helv Chim Acta 83: 278CrossRefGoogle Scholar
  68. 68.
    Rodoni S, Vicentini F, Schellenberg M, Matile P, Hörtensteiner S (1997) Partial Purification and Characterization of Red Chlorophyll Catabolite Reductase, a Stroma Protein Involved in Chlorophyll Breakdown. Plant Physiol 115: 677CrossRefGoogle Scholar
  69. 69.
    Rodoni S, Mühlecker W, Anderl M, Kräutler B, Moser D, Thomas H, Matile P, Hörtensteiner S (1997) Chlorophyll Breakdown in Senescent Chloroplasts. Cleavage of Pheophorbide a in Two Enzymic Steps. Plant Physiol 115: 669CrossRefGoogle Scholar
  70. 70.
    Vicentini F, Hörtensteiner S, Schellenberg M, Thomas H, Matile P (1995) Chlorophyll Breakdown in Senescent Leaves—Identification of the Biochemical Lesion in a Stay-Green Genotype of Festuca pratensis Huds. New Phytol 129: 247CrossRefGoogle Scholar
  71. 71.
    Schellenberg M, Matile P, Thomas H (1993) Production of a Presumptive Chlorophyll Catabolite in-vitro — Requirement for Reduced Ferredoxin. Planta 191: 417CrossRefGoogle Scholar
  72. 72.
    Hörtensteiner S, Wüthrich KL, Matile P, Ongania KH, Kräutler B (1998) The Key Step in Chlorophyll Breakdown in Higher Plants — Cleavage of Pheophorbide a Macrocycle by a Monooxygenase. J Biol Chem 273: 15335CrossRefGoogle Scholar
  73. 73.
    Curty C, Engel N, Gossauer A (1995) Evidence for a Monooxygenase-Catalyzed Primary Process in the Catabolism of Chlorophyll. FEBS Lett 364: 41CrossRefGoogle Scholar
  74. 74.
    Iturraspe J, Gossauer A (1992) A Biomimetic Partial Synthesis of the Red Chlorophyll a Catabolite from Chlorella protothecoides. Tetrahedron 48: 6807CrossRefGoogle Scholar
  75. 75.
    Gossauer A (2003) Synthesis of Bilins. In: Kadish KM, Smith KM, Guilard R (eds.) The Porphyrin Handbook, Vol. 13, p. 237. Academic Press/Elsevier, AmsterdamGoogle Scholar
  76. 76.
    Kräutler B, Mühlecker W, Anderl M, Gerlach B (1997) Breakdown of Chlorophyll: Partial Synthesis of a Putative Intermediary Catabolite—Preliminary Communication. Helv Chim Acta 80: 1355CrossRefGoogle Scholar
  77. 77.
    Topalov G, Kishi Y (2001) Chlorophyll Catabolism Leading to the Skeleton of Dinoflagellate and Krill Luciferins: Hypothesis and Model Studies. Angew Chem Int Ed 40: 4010CrossRefGoogle Scholar
  78. 78.
    Gossauer A (1994) Catabolism of Tetrapyrroles. Chimia 48 352Google Scholar
  79. 79.
    Pružinska A, Tanner G, Anders I, Roca M, Hörtensteiner S (2003) Chlorophyll Breakdown: Pheophorbide a Oxygenase is a Rieske-type Iron-sulfur Protein, Encoded by the Accelerated Cell Death 1 Gene. Proc Natl Acad Sci USA 100: 15259CrossRefGoogle Scholar
  80. 80.
    Pružinska A, Anders I, Aubry S, Schenk N, Tapernoux-Lüthi E, Müller T, Kräutler B, Hörtensteiner S (2007) In Vivo Participation of Red Chlorophyll Catabolite Reductase in Chlorophyll Breakdown and in Detoxification of Photodynamic Chlorophyll Catabolites. Plant Cell 19: 369CrossRefGoogle Scholar
  81. 81.
    Greenberg JT, Guo AL, Klessig DF, Ausubel FM (1994) Programmed Cell-Death in Plants — A Pathogen-Triggered Response Activated Coordinately with Multiple Defense Functions. Cell 77: 551CrossRefGoogle Scholar
  82. 82.
    Mach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis Accelerated Cell Death Gene ACD2 Encodes Red Chlorophyll Catabolite Reductase and Suppresses the Spread of Disease Symptoms. Proc Natl Acad Sci USA 98: 771CrossRefGoogle Scholar
  83. 83.
    Wüthrich KL, Bovet L, Hunziker PE, Donnison, IS, Hörtensteiner S (2000) Molecular Cloning, Functional Expression and Characterisation of RCC Reductase Involved in Chlorophyll Catabolism. Plant J 21: 189CrossRefGoogle Scholar
  84. 84.
    Hörtensteiner S, Rodoni S, Schellenberg M, Vicentini F, Nandi OI, Qui YL, Matile P (2000) Evolution of Chlorophyll Degradation: The Significance of RCC Reductase. Plant Biol 2: 63CrossRefGoogle Scholar
  85. 85.
    Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll Degradation. Ann Rev Plant Physiol Plant Mol Biol 50: 67CrossRefGoogle Scholar
  86. 86.
    Oberhuber M, Kräutler B (2002) Breakdown of Chlorophyll: Electrochemical Bilin Reduction Provides Synthetic Access to Fluorescent Chlorophyll Catabolites. Chem BioChem 3: 104Google Scholar
  87. 87.
    Falk H (1989) Chemistry of Linear Oligopyrroles and Bile Pigments. Springer, Wien New YorkGoogle Scholar
  88. 88.
    Cornejo J, Beale SI (1997) Phycobilin Biosynthetic Reactions in Extracts of Cyanobacteria. Photosynth Res 51: 223CrossRefGoogle Scholar
  89. 89.
    Frankenberg N, Lagarias JC (2003) Biosynthesis and Biological Functions of Bilins. In: Kadish KM, Smith KM, Guilard R (eds.) The Porphyrin Handbook, Vol. 13, p. 211. Elsevier Science, Oxford, UKGoogle Scholar
  90. 90.
    Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC (2001) Functional Genomic Analysis of the HY2 Family of Ferredoxin-Dependent Bilin Reductases from Oxygenic Photosynthetic Organisms. Plant Cell Physiol 13: 965Google Scholar
  91. 91.
    Eschenmoser A (1988). Vitamin-B12 — Experiments Concerning the Origin of Its Molecular-Structure. Angew Chem Int Ed 27: 5CrossRefGoogle Scholar
  92. 92.
    Oberhuber M, Berghold J, Kräutler B (2008) Chlorophyll Breakdown by Bio-mimetic Synthesis. Angew Chem Int Ed 47: 3057CrossRefGoogle Scholar
  93. 93.
    Ginsburg S, Matile P (1993) Identification of Catabolites of Chlorophyll-Porphyrin in Senescent Rape Cotyledons. Plant Physiol 102: 521Google Scholar
  94. 94.
    Hörtensteiner S, Kräutler B (2000) Chlorophyll Breakdown in Oilseed Rape. Photosynth Res 64: 137CrossRefGoogle Scholar
  95. 95.
    Mühlecker W, Kräutler B, Ginsburg S, Matile P (1993) Breakdown of Chlorophyll — A Tetrapyrrolic Chlorophyll Catabolite from Senescent Rape Leaves. Helv Chim Acta 76: 2976CrossRefGoogle Scholar
  96. 96.
    Müller T, Kräutler B (unpublished)Google Scholar
  97. 97.
    Hörtensteiner S (1998) NCC Malonyltransferase Catalyses the Final Step of Chlorophyll Breakdown in Rape (Brassica napus). Phytochem 49: 953CrossRefGoogle Scholar
  98. 98.
    Matile P (1997) The Vacuole and Cell Senescence. In: Callow JA (ed.) Advances in Botanical Research, p. 87. Academic Press, New YorkGoogle Scholar
  99. 99.
    Harborne JB (1986) The Natural Distribution in Angiosperms of Anthocyanins Acylated with Aliphatic Dicarboxylic-Acids. Phytochem 25: 1887CrossRefGoogle Scholar
  100. 100.
    Hinder B, Schellenberg M, Rodoni S, Ginsburg S, Vogt E, Martinoia E, Matile P, Hörtensteiner S (1996) How Plants Dispose of Chlorophyll Catabolites — Directly Energized Uptake of Tetrapyrrolic Breakdown Products into Isolated Vacuoles. J Biol Chem 271: 27233CrossRefGoogle Scholar
  101. 101.
    Losey FG, Engel N (2001) Isolation and Characterization of a Urobilinogenoidic Chlorophyll Catabolite from Hordeum vulgare. J Biol Chem 276: 8643CrossRefGoogle Scholar
  102. 102.
    Llewellyn CA, Mantoura RFC, Brereton RG (1990) Products of Chlorophyll Photodegradation. 2. Structural Identification. Photochem Photobiol 52: 1043CrossRefGoogle Scholar
  103. 103.
    Suzuki Y, Shioi Y (1999) Detection of Chlorophyll Breakdown Products in the Senescent Leaves of Higher Plants. Plant Cell Physiol 40: 909Google Scholar
  104. 104.
    Oshio Y, Hase E (1969) (1) Studies on Red Pigments Excreted by Cells of Chlorella protothecoides During Process of Bleaching Induced by Glucose or Acetate. I. Chemical Properties of Red Pigments. Plant Cell Physiol 10: 41Google Scholar
  105. 105.
    Oshio Y, Hase E (1969) Studies on Red Pigments Excreted by Cells of Chlorella protothecoides During Process of Bleaching Induced by Glucose or Acetate. 2. Mode of Formation of Red Pigments. Plant Cell Physiol 10: 51Google Scholar
  106. 106.
    Iturraspe J, Engel N, Gossauer A (1994) Chlorophyll Catabolism. 5. Isolation and Structure Elucidation of Chlorophyll b Catabolites in Chlorella protothecoides. Phytochem 35: 1387CrossRefGoogle Scholar
  107. 107.
    Curty C, Engel N (1997) Chlorophyll Catabolism: High Stereoselectivity in the Last Step of the Primary Ring Cleaving Process. Plant Physiol Biochem 35: 707Google Scholar
  108. 108.
    Raven HP, Evert RF, Eichhorn SE (1987) Biology of Plants. Worth Publishers, New YorkGoogle Scholar
  109. 109.
    Morel A (2006) Meeting the Challenge of Monitoring Chlorophyll in the Ocean from Outer Space. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds.) Chlorophylls and Bacteriochlorophylls Biochemistry, Biophysics, Functions and Applications, p. 521. Springer, DordrechtGoogle Scholar
  110. 110.
    Dunlap JC, Hastings JW, Shimomura O (1981) Dinoflagellate Luciferin is Structurally Related to Chlorophyll. FEBS Lett 135: 273CrossRefGoogle Scholar
  111. 111.
    Stojanovic MN, Kishi Y (1994) Dinoflagellate Bioluminescence — The Chromophore of Dinoflagellate Luciferin. Tetrahedron Lett 35 9343CrossRefGoogle Scholar
  112. 112.
    Stojanovic MN, Kishi Y (1994) Dinoflagellate Bioluminescence — Chemical Behavior of the Chromophore Towards Oxidants. Tetrahedron Lett 35: 9347CrossRefGoogle Scholar
  113. 113.
    Thomas H, Ougham H, Hörtensteiner S (2001) Recent Advances in the Cell Biology of Chlorophyll Catabolism. Adv Bot Res 35: 1CrossRefGoogle Scholar
  114. 114.
    Treibs A (1936) Chlorophyll and Heme Derivatives in Organic Mineral Materials. Angew Chem 49: 682CrossRefGoogle Scholar
  115. 115.
    Callot HJ, Ocampo R (2000) Geochemistry of Porphyrins. In: Kadish KM, Smith KM, Guilard R (eds.) The Porphyrin Handbook, Vol. 1, p. 349 Elsevier Science, OxfordGoogle Scholar
  116. 116.
    Matile P (2001) Senescence and Cell Death in Plant Development: Chloroplast Senescence and Its Regulation. In: Aro E-M, Andersson B (eds.) Regulation of Photosynthesis, p. 277 Kluwer Academic Publishers, DordrechtGoogle Scholar
  117. 117.
    Hörtensteiner S (1999) Chlorophyll Breakdown in Higher Plants and Algae. Cell Mol Life Sci 56: 330CrossRefGoogle Scholar
  118. 118.
    Noodén LA, Leopold AC (eds.) (1988) Senescing and Aging in Plants. Academic Press, San DiegoGoogle Scholar
  119. 119.
    Rodoni S, Schellenberg M, Matile P (1998) Chlorophyll Breakdown in Senescing Barley Leaves as Correlated with Phaeophorbide a Oxygenase Activity. J, Plant Physiol 152: 139Google Scholar
  120. 120.
    Smart CM (1994) Gene-Expression During Leaf Senescence. New Phytol 126: 419CrossRefGoogle Scholar
  121. 121.
    Jacob-Wilk D, Holland D, Goldschmidt EE, Riov J, Eyam Y (1999) Chlorophyll Breakdown by Chlorophyllase: Isolation and Functional Expression of the Chlase 1 Gene from Ethylene-treated Citrus Fruit and Its Regulation During Development. Plant J 20: 653CrossRefGoogle Scholar
  122. 122.
    Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K-I (1999) Cloning of Chlorophyllase, the Key Enzyme in Chlorophyll Degradation: Finding of a Lipase Motif and the Induction by Methyl Jasmonate. Proc Natl Acad Sci USA 96: 15362CrossRefGoogle Scholar
  123. 123.
    Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining Senescence and Death. J Exp Bot 54: 1127CrossRefGoogle Scholar
  124. 124.
    Thomas H (1997) Chlorophyll: A Symptom and a Regulator of Plastid Development. New Phytol 136: 163CrossRefGoogle Scholar
  125. 125.
    Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an Antioxidant of Possible Physiological Importances. Science 235: 1043CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2008

Authors and Affiliations

  1. 1.Institute of Organic ChemistryUniversity of InnsbruckInnsbruckAustria
  2. 2.Centre for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria

Personalised recommendations