Skip to main content

Long-term abnormalities in brain glucose/energy metabolism after inhibition of the neuronal insulin receptor: implication of tau-protein

  • Conference paper
Book cover Neuropsychiatric Disorders An Integrative Approach

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 72))

Abstract

The triplicate intracerebroventricular (icv) application of the diabetogenic compound streptozotocin (STZ) in low dosage was used in 1-year-old male Wistar rats to induce a damage of the neuronal insulin signal transduction (IST) system and to investigate the activities of hexokinase (HK), phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GDH), pyruvate kinase (PK), lactate dehydrogenase (LDH) and α-ketoglutarate dehydrogenase (α-KGDH) in frontoparietotemporal brain cortex (ct) and hippocampus (h) 9 weeks after damage. In parallel, the concentrations of adenosine triphosphate (ATP), adenosine diphosphate (ADP), guanosine triphosphate (GTP) and creatine phosphate (CrP) were determined. We found reductions of HK to 53% (ct) and 60% (h) of control, PFK to 63/64% (ct/h); GDH to 56/61% (ct/h), PFK to 57/59% (ct/h), α-KGDH to 37/35% (ct/h) and an increase of LDH to 300/240% (ct/h). ATP decreased to 82/87% (ct/h) of control, GTP to 69/81% (ct/h), CrP to 82/81% (ct/h), ∼P to 82/82% (ct/h), whereas ADP increased to 189/154% (ct/h). The fall of the activities of the glycolytic enzymes HK, PFK, GDH and PK was found to be more marked after 9 weeks of damage when compared with 3- and 6-week damage whereas the diminution in the concentration of energy rich compound was stably reduced by between 20 and 10% relative to control. The abnormalities in glucose/energy metabolism were discussed in relation to tau-protein mismetabolism of experimental animals, and of sporadic AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banks WA (2004) The source of cerebral insulin. Eur J Pharmacol 490: 5–12

    Article  PubMed  CAS  Google Scholar 

  • Bergmeyer HU (1974) Methods of enzymatic analysis. 3rd edn, Vols 1 and 2. Verlag Chemie, Weinheim

    Google Scholar 

  • Bigl M, Bleyl AD, Zedlick D, Arendt T, Bigl V, Eschrich K (1996) Changes of activity and isoenzyme pattern of phosphofructokinase in the brains of patients with Alzheimer’s disease. J Neurochem 67: 1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Bigl M, Brückner MK, Arendt T, Bigl V, Eschrich K (1999) Activities of key glycolytic enzymes in the brains of patients with Alzheimer’s disease. J Neural Transm 100: 499–511

    Article  Google Scholar 

  • Bigl M, Beck M, Bleyl AD, Bigl V, Eschrich K (2000) Altered phosphofruktokinase mRNA levels but unchanged isoenzyme pattern in brains from patients with Alzheimer’s disease. Mol Brain Res 76: 411–414

    Article  PubMed  CAS  Google Scholar 

  • Blokland A, Jolies J (1993) Spatial learning deficit and reduced hippocampal ChAT activity in rats after an icv injection of streptozotocin. Pharmacol Biochem Behav 44: 491–494

    Article  PubMed  CAS  Google Scholar 

  • Brooks WM, Lynch PJ, Ingle CC, Hatton A, Emson PC, Faull RLM, Starkey MP (2007) Gene expression profiles of metabolic enzyme transcripts in Alzheimer’s disease. Brain Res 1127: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Brown GG, Levine SR, Gorell JM, Pettegrew JW, Gdowski JE, Bueri JA, Helpern JA, Welch KMA (1989) In vivo 31P-NMR profiles of Alzheimer disease and multiple subcortical infarct dementia. Neurology 39: 1423–1427

    PubMed  CAS  Google Scholar 

  • Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE (2005) Mitochondrial abnormalities in Alzheimer brain: Mechanistic implications. Ann Neurol 57: 695–703

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF, Besnard AM (1990) Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer’s disease. Metab Brain Dis 5: 179–184

    Article  PubMed  CAS  Google Scholar 

  • Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312: 163–167

    PubMed  CAS  Google Scholar 

  • de la Monte S, Tong M, Lester-Coll N, Plater Jr M, Wands JR (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: Relevance to Alzheimer’s disease. J Alzheimers Dis 10: 89–109

    PubMed  Google Scholar 

  • Devaskar SU, Giddings SJ, Rajakumar PA, Carnaghi LR, Menon RK, Zahm DS (1994) Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem 269: 8445–8454

    PubMed  CAS  Google Scholar 

  • Duelli R, Schröck H, Kuschinsky W, Hoyer S (1994) Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci 12: 737–743

    Article  PubMed  CAS  Google Scholar 

  • Fellgiebel A, Siesmeier T, Scheurich A, Winterer G, Bartenstein P, Schmidt LG, Müller MJ (2004) Association of elevated phospho-tau levels with Alzheimer-typical 18F-Fluoro-2-deoxy-D-glucose positron emission tomography findings in patients with mild cognitive impairment. Biol Psychiatry 56: 279–283

    Article  PubMed  CAS  Google Scholar 

  • Frölich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Turk A, Hoyer S, Zochling R, Boissl KW, Jellinger K, Riederer P (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105: 423–438

    Article  PubMed  Google Scholar 

  • Gerozissis K (2003) Brain insulin: Regulation, mechanism of action and functions. Cell Mol Neurobiol 23: 1–25

    Article  PubMed  Google Scholar 

  • Gibson GE, Jope R, Blass JP (1975) Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem J 148: 17–23

    PubMed  CAS  Google Scholar 

  • Giorgino F, Chen JH, Smith RJ (1992) Changes in tyrosine phosphorylation of insulin receptors and a 170,000 molecular weight nonreceptor protein in vivo in skeletal muscle of streptozotocin-induced diabetic rats: Effects of insulin and glucose. Endocrinology 130: 1433–1444

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ND, Passonneau JV, Lowry OH (1966) Effects of changes in brain metabolism on the levels of critic cycle intermediates. J Biol Chem 241: 3997–4003

    PubMed  CAS  Google Scholar 

  • Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2006) Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlycNAcylation. J Alzheimers Dis 9: 1–12

    PubMed  CAS  Google Scholar 

  • Grünblatt E, Koutsilieri E, Hoyer S, Riederer P (2000) Gene expression alterations in brain areas of intracerebroventricular streptozotocin treated rat. J Alzheimers Dis 9: 261–271

    Google Scholar 

  • Grünblatt E, Hoyer S, Riederer P (2004) Gene expression profile in stroptozotocin rat model for sporadic Alzheimer’s disease. J Neural Transm 111: 367–386

    Article  PubMed  CAS  Google Scholar 

  • Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau-protein. J Neurochem 101: 757–770

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19: 1720–1730

    PubMed  CAS  Google Scholar 

  • Hart GW (1997) Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Ann Rev Biochem 66: 315–335

    Article  PubMed  CAS  Google Scholar 

  • Hellweg R, Nitsch R, Hock C, Jaksch M, Hoyer S (1992) Nerve growth factor and choline acetyltransferase activity level in rat brain following experimental impairment of cerebral glucose and energy metabolism. J Neurosci Res 31: 479–486

    Article  PubMed  CAS  Google Scholar 

  • Hill JM, Lesniak MA, Pert CB, Roth J (1986) Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 17: 1127–1138

    Article  PubMed  CAS  Google Scholar 

  • Hock C, Golombowski S, Naser W, Müller-Spahn F (1995) Increased levels of tau-protein in cerebrospinal fluid of patients with Alzheimer’s disease-correlation with degree of cognitive impairment. Ann Neurol 37: 414–415

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S (1992) Oxidative energy metabolism in Alzheimer brain. Studies in early-onset and late-onset cases. Mol Chem Neuropathol 16: 207–224

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S (1998) Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105: 415–422

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S (2004) Glucose metabolism and insulin signal transduction in Alzheimer disease. Eur J Pharmacol 490: 115–125

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Frölich L (2007) Brain function and insulin signal transduction in sporadic Alzheimer’s disease. In: Sun MK (ed) Research progress in Alzheimer’s disease and dementia. Nova Science, New York, USA (in press)

    Google Scholar 

  • Hoyer S, Krier C (1986) Ischemia and the aging brain. Studies on glucose and energy metabolism in rat cerebral cortex. Neurobiol Aging 7: 23–29

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Hamer J, Alberti E, Stoeckel H, Weinhardt F (1974) The effect of stepwise arterial hypotension on blood flow and oxidative metabolism of the brain. Pflügers Arch 351: 161–172

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Lannert H, Latteier E, Meisel T (2004) Relationship between cerebral energy metabolism in parietotemporal cortex and hippocampus and mental activity during aging in rats. J Neural Transm 111: 575–589

    Article  PubMed  CAS  Google Scholar 

  • Kaasik AE, Nilsson L, Siesjö BK (1970) The effect of arterial hypotension upon the lactate, pyruvate and bicarbonate concentration of the brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats. Acta Physiol Scand 78: 448–458

    PubMed  CAS  Google Scholar 

  • Kadowaki T, Kasuga M, Akanuma Y, Ezaki O, Takaku F (1984) Decreased autophoysphorylation of the insulin receptor-kinase in streptozotocindiabetic rats. J Biol Chem 259: 14208–14216

    PubMed  CAS  Google Scholar 

  • Kjällquist A, Nardini M, Siesjö BK (1969) The regulation of extra-and intracellular acid-base parameters in the rat brain during hyper-and hypocapnia. Acta Physiol Scand 76: 485–494

    PubMed  Google Scholar 

  • Kröncke KD, Fehsel K, Sommer A, Rodriguez ML, Kolb-Bachofen V (1995) Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotocin contributes to islet cell DNA damage. Biol Chem Hoppe-Seyler 376: 179–185

    PubMed  Google Scholar 

  • Lackovic Z, Salkovic M (1990) Streptozotocin and alloxan produce alterations in rat brain monoamines independently of pancreatic beta cell destruction. Life Sci 46: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Lai JCK, Baker A, Carlson K, Blass IP (1985) Differential effects of monovalent, divalent and trivalent metal ions on rat brain hexokinase. Comp Biochem Physiol 80: 291–294

    CAS  Google Scholar 

  • Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112: 1199–1208

    Article  PubMed  CAS  Google Scholar 

  • Lannert H, Wirtz P, Schuhmann V, Galmbacher R (1998) Effects of estradiol (-17β) on learning, memory and cerebral energy metabolism in male rats after intracerebroventricular administration of streptozotocin. J Neural Transm 105: 1045–1063

    Article  PubMed  CAS  Google Scholar 

  • Leong SF, Lai JCK, Lim L, Clark JB (1981) Energy-metabolizing enzymes in the brain regions of adult and aging rats. J Neurochem 37: 1548–1556

    Article  PubMed  CAS  Google Scholar 

  • Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: Relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9: 13–33

    PubMed  CAS  Google Scholar 

  • Lewis LD, Ljunggren B, Norberg K, Siesjö BK (1974) Changes in carbohydrate substrates, amino acids and ammonia in the brain during insulin-induced hypoglycaemia. J Neurochem 23: 659–671

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: A mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 101: 10804–10809

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the foliphenol reagent. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  • Mandelkow EM, Thies E, Trinczek B, Biernat J, Mandelkow E (2004) MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J Cell Biol 10: 1083/jcb 200401085

    Google Scholar 

  • Mastrogiacomo F, Bergeron C, Kish SJ (1983) Brain α-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease. J Neurochem 61: 2007–2014

    Article  Google Scholar 

  • Maurer K, Hoyer S (2006) Alois Alzheimer revisited: differences in origin of the disease carrying his name. J Neural Transm 113: 1645–1658

    Article  PubMed  CAS  Google Scholar 

  • Mayer G, Nitsch R, Hoyer S (1990) Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity learning and memory in adult male rats. Brain Res 532: 95–100

    Article  PubMed  CAS  Google Scholar 

  • Michikawa M, Yanagisawa K (1999) Inhibition of cholesterol production but not of nonsterol isoprenoid products induces neuronal cell death. J Neurochem 72: 2278–2285

    Article  PubMed  CAS  Google Scholar 

  • Mielke R, Herholz K, Grond M, Heiss WD (1994) Clinical deterioration in probable Alzheimer’s disease correlates with progressive metabolic impairment of association areas. Dementia 5: 36–41

    Article  PubMed  CAS  Google Scholar 

  • Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulated cortex in very early Alzheimer’s disease. Ann Neurol 42: 85–94

    Article  PubMed  CAS  Google Scholar 

  • Müller D, Nitsch RM, Wurtman RJ, Hoyer S (1998) Streptozotocin increases free fatty acids and decreases phospholipids in rat brain. J Neural Transm 105: 1271–1281

    Article  PubMed  Google Scholar 

  • Nitsch R, Hoyer S (1991) Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex. Neurosci Lett 128: 199–202

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Mayer G, Galmbacher R, Galmbacher G, Apell V, Hoyer S (1990) Impairment of cerebral glucose metabolism parallels learning and memory dysfunction after intracerebral streptozotocin. In: Maurer K, Riederer P, Beckmann H (eds) Alzheimer’s disease. Epidermiology, neuropathology, neurochemistry, and clinics. Springer, Wien New York, pp 201–209

    Google Scholar 

  • Norberg K, Siesjö BK (1976) Oxidative metabolism of the cerebral cortex of the rat in insulin-induced hypoglycaemia. J Neurochem 26: 345–352

    Article  PubMed  CAS  Google Scholar 

  • Park CR (2001) Cognitive effects of insulin in the central nervous system. Neurosci Biobehav Rev 25: 311–323

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Perry RG, Tomlinson BE, Blessed G, Gibson PH (1980) Coenzyme A-acetylating enzymes in Alzheimer’s disease: possible cholinergic “compartment” of pyruvate dehydrogenase. Neurosci Lett 18: 105–110

    Article  PubMed  CAS  Google Scholar 

  • Plaschke K, Hoyer S (1993) Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus. Int J Dev Neurosci 11: 477–483

    Article  PubMed  CAS  Google Scholar 

  • Porte Jr D, Baskin DG, Schwartz MW (2005) Insulin signalling in the central nervous system. A critical role in metabolic homeostasis and disease. From C elegant to humans. Diabetes 54: 1264–1276

    CAS  Google Scholar 

  • Prickaerts J, Fahring T, Blokland A (1999) Cognitive performance and biochemical markers in septum, hippocampus and striatum of rats after an icv injection of streptozotocin: a correlation analysis. Behav Brain Res 102: 73–88

    Article  PubMed  CAS  Google Scholar 

  • Raizada MK, Shemer J, Judkins JH, Clarke DW, Masters BA, Le Roith D (1988) Insulin receptors in the brain: structural and physiological characterization. Neurochem Res 13: 297–303

    Article  PubMed  CAS  Google Scholar 

  • Rivera El, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: Link to brain reductions in acetylcholine. J Alzheimers Dis 8: 247–268

    PubMed  CAS  Google Scholar 

  • Röder HM, Ingram VM (1991) Two novel kinases phosphorylate tau and the KSP site of heavy neurofilament subunits in high stoichiometric ratios. J Neurosci 11: 3325–3342

    PubMed  Google Scholar 

  • Sacks W (1957) Cerebral metabolism of isotopic glucose in normal brain subjects. J Appl Physiol 10: 37–44

    PubMed  CAS  Google Scholar 

  • Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96: 1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Schechter R, Whitmire J, Holtzclaw L, George M, Harlow R, Devaskar SU (1992) Developmental regulation of insulin in the mammalian central nervous system. Brain Res 582: 27–37

    Article  PubMed  CAS  Google Scholar 

  • Schechter R, Beju D, Gaffney T, Schaefer F, Whetsell L (1996) Prepoinsulin I and II mRNAs and insulin electron microscopic immunoreaction are present within the rat fetal nervous system. Brain Res 736: 16–27

    Article  PubMed  CAS  Google Scholar 

  • Schönknecht P, Pantel J, Hartmann T, Werle E, Volkmann M, Essig M, Amann M, Zanabili N, Bardenheuer H, Hunt A, Schröder J (2003) Cerebrospinal fluid tau levels in Alzheimer’s disease are elevated when compared with vascular dementia but do not correlate with measures of cerebral atrophy. Psychiatr Res 120: 231–238

    Article  CAS  Google Scholar 

  • Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24: 855–872

    Article  PubMed  CAS  Google Scholar 

  • Sechi LA, Griffin CA, Grady EF, Grunfeld C, Kalinyak JE, Schambelan M (1992) Tissue specific regulation of insulin receptor mRNA levels in rats with STZ-induced diabetes mellitus. Diabetes 41: 1113–1118

    Article  PubMed  CAS  Google Scholar 

  • Sims NR, Bowen DM, Neary D, Davison AN (1983) Metabolic processes in Alzheimer’s disease: adenine nucleotide content and production of 14CO2 from (U 14C) glucose in vivo in human neocortex. J Neurochem 41: 1329–1334

    Article  PubMed  CAS  Google Scholar 

  • Singh H, Usher S, Poulos A (1989) Mitochondrial and peroxisomal betaoxidation of stearic and lignoceric acids by rat brain. J Neurochem 53: 1711–1718

    Article  PubMed  CAS  Google Scholar 

  • Skoog I, Vanmechelen E, Andreasson LA, Palmertz B, Davidson P, Hesse C, Blennow K (1995) A population-based study of tau-protein and ubiquitin in cerebrospinal fluid in 85-year-olds: relation to severity of dementia and cerebral atrophy, but not to the apolipoprotein E4 allele. Neurodegeneration 4: 433–442

    Article  PubMed  CAS  Google Scholar 

  • Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, Lavretsky H, Burggren AC, Cole GM, Vinters HV, Thompson PM, Huang SC, Satyamurthy N, Phelps ME, Barrio JR (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355: 2652–2663

    Article  PubMed  CAS  Google Scholar 

  • Sorbi S, Bird ED, Blass JP (1983) Decreased pyurvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 21: 509–510

    Google Scholar 

  • Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156: 1051–1063

    Article  PubMed  CAS  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signalling mechanisms in Alzheimer’s disease — is this type 3 diabetes? J Alzheimers Dis 7: 63–80

    PubMed  CAS  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Rev 50: 536–546

    Google Scholar 

  • Takasu N, Komiya I, Asawa T, Nagasawa Y, Yamada T (1991) Streptozotocin-and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation. Diabetes 40: 1141–1145

    Article  PubMed  CAS  Google Scholar 

  • Terwel D, Prickaerts J, Mery F, Jolies J (1995) Brain enzyme activities after intracerebroventricular injection of streptozotocin in rats receiving acetyl-L-carnitine. Eur J Pharmacol 287: 65–71

    Article  PubMed  CAS  Google Scholar 

  • Unger J, McNeill TH, Moxley RT, White M, Moss A, Livingston JN (1989) Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience 31: 143–157

    Article  PubMed  CAS  Google Scholar 

  • Weiss RB (1982) Streptozotocin: A review on its pharmacology, efficacy, and toxicity. Cancer Treat Rep 66: 427–438

    PubMed  CAS  Google Scholar 

  • Werther GA, Hogg A, Oldfield BJ, McKinley MJ, Figdor R, Allen AM, Mendelsohn FA (1987) Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121: 1562–1570

    Article  PubMed  CAS  Google Scholar 

  • Weyne J, Demester G, Leusen I (1968a) Bicarbonate and chloride shifts in rat brain during acute and prolonged respiratory acid-base changes. Arch Int Physiol 76: 415–433

    Article  PubMed  CAS  Google Scholar 

  • Weyne J, Demester G, Leusen I (1968b) Brain and blood lactate during acute and prologned respiratory acidosis and alkalosis. Arch Int Physiol 76: 157–159

    PubMed  CAS  Google Scholar 

  • Wong KL, Tyce GM (1983) Glucose and amino acid metabolism in rat brain during sustained hypoglycaemia. Neurochem Res 8: 401–415

    Article  PubMed  CAS  Google Scholar 

  • Zwetnow NN (1970) The influence of an increased intracranial pressure on the lactate, pyruvate, bicarbonate, phosphocreatine, ATP, ADP and AMP concentrations of the cerebral cortex of dogs. Acta Physiol Scand 79: 158–166

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Hoyer, S., Lannert, H. (2007). Long-term abnormalities in brain glucose/energy metabolism after inhibition of the neuronal insulin receptor: implication of tau-protein. In: Gerlach, M., Deckert, J., Double, K., Koutsilieri, E. (eds) Neuropsychiatric Disorders An Integrative Approach. Journal of Neural Transmission. Supplementa, vol 72. Springer, Vienna. https://doi.org/10.1007/978-3-211-73574-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-73574-9_25

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-73573-2

  • Online ISBN: 978-3-211-73574-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics