Skip to main content

Numerical Methods for Elastic Wave Propagation

  • Chapter
Waves in Nonlinear Pre-Stressed Materials

Part of the book series: CISM Courses and Lectures ((CISM,volume 495))

Abstract

There is a great need for numerical methods which treat time-dependent elastic wave propagation problems. Such problems appear in many applications, for example in geophysics or non-destructive testing. In particular, seismic wave propagation is one of the areas where intensive scientific computation has been developed and used since the beginning of the 70’s, with the apparition of finite differences time domain methods (FDTD). Although very old, these methods remain very popular and are widely used for the simulation of wave propagation phenomena or more generally for the numerical resolution of linear hyperbolic systems. They consist in obtaining discrete equations whose unknowns are generally field values at the points of a regular mesh with spatial step h and time step Δt. A prototype of these methods is the famous Yee§s scheme introduced in 1966 for Maxwell§s equations. There are several reasons that explain the success of Yee type schemes, among which their easy implementation and their efficiency which are related to the following properties:

  • a uniform regular grid is used for the space discretization, so that there is a minimum of information to store and the data to be computed are structured: in other words, one avoids all the complications due to the use of non uniform meshes.

  • an explicit time discretization is applied: no linear system has to be solved at each time step.

This text is a modification of a part of a longer text to appear as a chapter of a book (Derveaux et al., 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • S. Abarbanel and D. Gottlieb. A mathematical analysis of the PML method. Journal of Computational Physics, 134:357–263, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  • J.D. Achenbach. Wave Propagation in Elastic Solids. Elsevier, 1984.

    Google Scholar 

  • D. N. Arnold, D. Boffi, and R. S. Falk. Approximation by quadrilateral finite elements. Math. Comp., 71(239):909–922 (electronic), 2002. ISSN 0025-5718.

    Article  MATH  MathSciNet  Google Scholar 

  • B.A. Auld. Acoustic Fields and Elastic Waves in Solids. John Wiley, 1973.

    Google Scholar 

  • G.A. Baker and V.A. Dougalis. The effect of quadrature errors on finite element approximations for the second-order hyperbolic equations. SIAM Journal on Numerical Analysis, 13:577–598, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Bamberger, G. Chavent, and P. Lailly. Etude de schémas numériques de l’élastodynamique linéaire. Technical Report 41, INRIA, Octobre 1980.

    Google Scholar 

  • A. Bamberger, J.-C. Guillot, and P. Joly. Numerical diffraction by a uniform grid. SIAM Journal on Numerical Analysis, 25:753–783, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Bécache, S. Fauqueux, and P. Joly. Stability of perfectly matched layers, group velocities and anisotropic waves. Journal of Computational Physics, 188:399–433, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Bécache and P. Joly. On the analysis of Berengers perfectly matched layers for Maxwell equations. Mathematical Modelling and Numerical Analysis, 36:87–120, 2002.

    Article  MATH  Google Scholar 

  • E. Bécache, P. Joly, and C. Tsogka. Fictitious domains, mixed FE and PML for 2-D elastodynamics. Journal of Computational Acoustics, 9:1175–1201, 2001.

    Google Scholar 

  • E. Bécache, P. Joly, and C. Tsogka. A new family of mixed finite elements for the linear elastodynamic problem. SIAM Journal on Numerical Analysis, 39:2109–2132, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Bemberger, B. Engquist, L. Halpern, and P. Joly. Higher order paraxial approximations for the wave equation. SIAM Journal on Applied Mathematics, 48:129–154, 1988.

    Article  MathSciNet  Google Scholar 

  • J.P. Bérenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal Computational Physics, 114:185–200, 1994.

    Article  MATH  Google Scholar 

  • J.P. Bérenger. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. Journal Computational Physics, 127:363–379, 1996.

    Article  MATH  Google Scholar 

  • J.P. Bérenger. Improved PML for the FDTD solution of wave-structure interaction problems. IEEE Transactions on Antennas and Propagation, 45:466–473, 1997.

    Article  Google Scholar 

  • B. Chalindar. Conditions aux Limites Artificielles pour les Equations de l’Elastodynamique. PhD thesis, Université de Saint-Etienne, 1987.

    Google Scholar 

  • M.J.S. Chin-Joe-Kong, W.A. Mulder, and M. Van Veldhuizen. Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation. Journal of Engineeting Mathematics, 35:405–426, 1999.

    Article  MATH  Google Scholar 

  • P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, 1982.

    Google Scholar 

  • G. Cohen. Higher-Order Numerical Methods for Transient Wave Equations. Springer, 2002.

    Google Scholar 

  • G. Cohen, P. Joly, J. E. Roberts, and N. Tordjman. Higher order triangular finite elements with mass lumping for the wave equation. SIAM Journal on Numerical Analysis, 38, 2001.

    Google Scholar 

  • F. Collino. High order absorbing boundary conditions for wave propagation models: straight line boundary and corner cases. In PA SIAM, Philadelphia, editor, Second International Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE, 1993), pages 161–171, 1993.

    Google Scholar 

  • F. Collino. Perfectly matched absorbing layers for the paraxial equations. Journal of Computational Physics, 131:164–180, 1996.

    Article  MathSciNet  Google Scholar 

  • F. Collino and P. Monk. Optimizing the perfectly matched layer. Computational Methods Applied to Mechanical Engineering, 164:157–171, 1998a.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Collino and P. Monk. The Perfectly Matched Layer in curvilinear coordinates. SIAM Journal on Scientific Computation, 164:157–171, 1998b.

    MATH  MathSciNet  Google Scholar 

  • F. Collino and C. Tsogka. Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heteregeneous media. Geophysics, 66:294–305, 2001.

    Article  Google Scholar 

  • G. Derveaux, P. Joly, and C. Tsogka. Numerical methods for elastic wave propagation. In V.A. Dougalis, J.A. Ekaterinaris, and N.A. Kampanis, editors, Numerical Insight. CRC Press, 2006.

    Google Scholar 

  • J. Diaz. Approches Analytiques et Numériques de Problèmes de Transmission en Propagation d’Ondes en Régime Transitoire. Application au Couplage Fluide-Structure et aux Méthodes de Couches Parfaitement Adaptées. PhD thesis, Universitée Versailles Saint-Quentin, 2005.

    Google Scholar 

  • T. Ha Duong and P. Joly. On the stability analysis of boundary conditions for the wave equation by energy methods. Part 1: The homogeneous case. Technical Report 1306, INRIA, 1990.

    Google Scholar 

  • T. Dupont. L 2-estimates for Galerkin methods for second order hyperbolic equations. SIAM Journal on Numerical Analysis, 10:880–889, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Durufle. Intégration Numérique et Eléments Fins d’Ordre Elevé Appliqués aux Equations de Maxwell en Régime Harmonique. PhD thesis, Université Paris IX Dauphine, 2006.

    Google Scholar 

  • G. Duvaut and J.L. Lions. Inequalities in Mechanics and Physics. Springer, 1976.

    Google Scholar 

  • B. Engquist and A. Majda. Absorbing boundary conditions for the numerical simulation of waves. Mathematics of Computation, 31:629–651, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  • A. C. Eringen and E. S. Şuhubi. Elastodynamics, Volume I, Finite motions. Academic Press, 1974.

    Google Scholar 

  • A.C. Eringen and E.S. Şuhubi. Elastodynamics, Volume II, Linear Theory. Academic Press, 1975.

    Google Scholar 

  • S. Fauqueux. Eléments Finis Mixtes Spectraux et Couches Absorbantes Parfaitement Adaptées pour la Propagation d’Ondes Elastiques en Régime Transitoire. PhD thesis, Université Paris IX Dauphine, 2003.

    Google Scholar 

  • K.O. Friedrichs. On the boundary-value problems of the theory of elasticity and Korn’s inequality. Annals of Mathematics, Second Series, 48:441–471, 1947.

    MathSciNet  Google Scholar 

  • W. Gautschi. Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, 2004.

    Google Scholar 

  • G. Geymonat and G. Gilardi. Contre-exemples à l’inégalité de Korn et au lemme de Lions dans des domaines irréguliers. In Équations aux Dérivées Partielles et Applications, pages 541–548. Gauthier-Villars, 1998.

    Google Scholar 

  • D. Givoli. High-order local non-reflecting boundary conditions: a review. Wave Motion, 39:319–326, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Grisvard. Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. In Numerical solution of partial differential equations (Proceedings of the Third Symposium SYNSPADE), pages 207–274. Academic Press, 1976.

    Google Scholar 

  • M. Grote and J. Keller. Exact nonreflecting boundary conditions for the time dependent wave equation. SIAM Journal on Applied Mathematics, 55:280–297, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Grote and J. Keller. Nonreflecting boundary conditions for time dependent scattering. Journal of Computational Physics, 127:52–81, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Hagstrom. On high-order radiation boundary condition. In B. Engquist and G.A. Kriegsmann, editors, Computational Wave Propagation, volume 86, pages 1–21. Springer, 1997.

    Google Scholar 

  • T. Hagstrom. Radiation boundary conditions for the numerical simulation of waves. Acta numerica, 8:47–106, 1999.

    Article  MathSciNet  Google Scholar 

  • T. Hagstrom. New results on absorbing layers and radiation boundary conditions. preprint, 2005.

    Google Scholar 

  • T. Hagstrom and S.I. Hariharan. A formulation of asymptotic and exact boundary conditions using local operators. Applied Numerical Mathematics, 27:403–416, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Halpern. Étude de Conditions aux Limites Absorbantes pour des Schémas Numériques Relatifs à des Equations Hyperboliques Linéaires. PhD thesis, Université Paris IV, 1980.

    Google Scholar 

  • F. Hastings, J.B. Schneider, and S.L. Broschat. Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. Journal of the Acoustical Society of America, 100:3061–3069, 1996.

    Article  Google Scholar 

  • R.L. Higdon. Initial-boundary value problems for linear hyperbolic systems. SIAM Review, 28:177–217, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  • R.L. Higdon. Radiation boundary conditions for elastic wave propagation. SIAM Journal on Numerical Analysis, 27:831–870, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • R.L. Higdon. Absorbing boundary conditions for elastic waves. Geophysics, 56:231–241, 1991.

    Article  Google Scholar 

  • R.L. Higdon. Absorbing boundary conditions for acoustic and elastic waves in stratified media. Journal of Computational Physics, 101:386–418, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Hörmander. The analysis of linear partial differential operators. III. In Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], volume 274. Springer, 1994.

    Google Scholar 

  • M. Israeli and S.A. Orszag. Approximation of radiation boundary conditions. Journal of Computational Physics, 41:115–135, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Joly. Variational methods for time-dependent wave propagation problems. In Topics in Computational Wave Propagation, Direct and Inverse Problems, pages 201–264. LNCSE, 2003.

    Google Scholar 

  • V.A. Kondratiev and O.A. Oleinik. On Korn’s inequalities. Comptes Rendus de l’Académie des Sciences de Paris, Série I, 308:483–487, 1989.

    MATH  MathSciNet  Google Scholar 

  • H-O. Kreiss and J. Lorenz. Initial-Boundary Value Problems and the Navier-Stokes Equations. Academic Press, 1989.

    Google Scholar 

  • E. Lindman. Free space boundary conditions for time dependant wave equation. Journal of Computational Physics, 18:66–78, 1975.

    Article  MATH  Google Scholar 

  • J.L. Lions and E. Magenès. Problèmes aux Limites non Homogènes et Applications. Dunod, 1968.

    Google Scholar 

  • J. Miklowitz. The theory of elastic waves and waveguides. volume 22 of North-Holland Series in Applied Mathematics and Mechanics. North-Holland, 1978.

    Google Scholar 

  • W.A. Mulder. Higher-order mass-lumped finite elements for the wave equation. Journal of Computational Acoustics, 9:671–680, 2001.

    Article  MathSciNet  Google Scholar 

  • J.A. Nitsche. On Korn’s second inequality. RAIRO Analyse Numérique, 15:237–248, 1981.

    MATH  MathSciNet  Google Scholar 

  • C. Peng and M.N. Toksoz. An optimal absorbing boundary condition for elastic wave modeling. Geophysics, 60:296–301, 1995.

    Article  Google Scholar 

  • P.G. Petropoulos, L. Zhao, and A.C. Cangellaris. A reflectionless sponge layer absorbing boundary condition for the solution of Maxwell’s equations with high-order staggered finite difference schemes. Journal of Computational Physics, 139:184–208, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Simone and S. Hestholm. Instability in applying absorbing boundary conditions to high-order seismic modeling algorithms. Geophysics, 63:1017–1023, 1998.

    Article  Google Scholar 

  • J. Sochacki, R. Kubichek, J. George, W.R. Fletcher, and S. Smithson. Absorbing boundary conditions and surface waves. Geophysics, 52:60–71, 1987.

    Article  Google Scholar 

  • A.H. Stroud. Numerical Quadrature and Solution of Ordinary Differential Equations. Springer, 1974

    Google Scholar 

  • C.K.W. Tam, L. Auriault, and F. Cambuli. Perfectly matched layer as an absorbing boundary condition for the linearized Euler equations in open and ducted domains. Journal of Computational Physics, 144:213–234, 1998.

    Article  MathSciNet  Google Scholar 

  • M.E. Taylor. Partial differential equations. I. volume 115 of Applied Mathematical Sciences. Springer, 1996.

    Google Scholar 

  • F.L. Teixeira and W.C. Chew. Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves. Microwave and Optical Technology Letters, 17: 231–236, 1998.

    Article  Google Scholar 

  • F.L. Teixeira and W.C. Chew. Unified analysis of perfectly matched layers using differential forms. Microwave and Optical Technology Letters, 20:124–126, 1999.

    Article  Google Scholar 

  • N. Tordjman. Eléments Finis d’Ordre Elevé avec Condensation de Masse pour l’Equation des Ondes. PhD thesis, Paris IX, 1995.

    Google Scholar 

  • L. Trefethen and L. Halpern. Well posedness of one way equations and absorbing boundary conditions. Mathematics of Computation, 47:421–435, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  • L.N. Trefethen. Group velocity in finite difference schemes. SIAM Review, 24, 1982.

    Google Scholar 

  • L.N. Trefethen. Group velocity interpretation of the stability theory of Gustafsson, Kreiss and Sundström. Journal of Computational Physics, 49, 1983.

    Google Scholar 

  • L.N. Trefethen. Instability of difference models for hyperbolic initial boundary value problems. Communications on Pure and Applied Mathematics, 37:329–367, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Turkel and A. Yefet. Absorbing PML boundary layers for wave-like equations. Absorbing boundary conditions. Applied Numerical Mathematics, 27:553–557, 1998.

    MathSciNet  Google Scholar 

  • L. Zhao and A.C. Cangellaris. A general approach to for developping unsplit-field time-domain implementations of perfectly matched layers for FDTD grid truncation. IEEE Transactions on Microwave Theory and Technology, 44:2555–2563, 1996.

    Article  Google Scholar 

  • O.C. Zienkiewicz. The Finite Element Method in Engineering Science. McGraw-Hill, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 CISM, Udine

About this chapter

Cite this chapter

Joly, P. (2007). Numerical Methods for Elastic Wave Propagation. In: Destrade, M., Saccomandi, G. (eds) Waves in Nonlinear Pre-Stressed Materials. CISM Courses and Lectures, vol 495. Springer, Vienna. https://doi.org/10.1007/978-3-211-73572-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-73572-5_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-73571-8

  • Online ISBN: 978-3-211-73572-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics