Skip to main content

Finite Amplitude Waves in Nonlinear Elastodynamics and Related Theories: A Personal Overview?

  • Chapter
Book cover Waves in Nonlinear Pre-Stressed Materials

Part of the book series: CISM Courses and Lectures ((CISM,volume 495))

Abstract

This Chapter presents a personal survey of some basic results about finite amplitude waves in nonlinear elasticity and related theories. For isotropic materials, general classes of solutions for the basic equations of wave propagation are obtained by reducing the equations of motion to a system of ordinary differential equations. When dispersive or dissipative effects are taken into account, solitary wave solutions are possible. The effects of a general homogeneous prestress on finite amplitude wave propagation are investigated for a large family of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • A. Andreadou, D.F. Parker, and A.J.M. Spencer. Some exact dynamic solutions in nonlinear elasticity. International Journal of Engineering Science, 31:695–718, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • S.S. Antman. Nonlinear Problems of Elasticity. Springer, 2004.

    Google Scholar 

  • M.F. Beatty. Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues-with examples. Applied Mechanics Reviews, 40:1699–1733, 1987.

    Article  Google Scholar 

  • M.F. Beatty. A stretch averaged full-network for rubber elasticity. Journal of Elasticity, 70:65–86, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • M.F. Beatty. On the radial oscillations of incompressible, isotropic, elastic and limited elastic thick-walled tubes. International Journal of Non-Linear Mechanics, to appear, 2007.

    Google Scholar 

  • J.E. Bischoff, E.M. Arruda, and K. Grosh. A new constitutive model for the compressibility of elastomers at finite deformations. Rubber Chemistry and Technology, 74:541–559, 2001.

    Google Scholar 

  • D.R. Bland. Nonlinear Dynamic Elasticity. Blaisdell, 1969.

    Google Scholar 

  • Ph. Boulanger and M. Hayes. Finite-amplitude motions in some non-linera elastic media. Proceedings Royal Irish Academy, Series A, 89:135–146, 1989.

    MATH  MathSciNet  Google Scholar 

  • Ph. Boulanger and M. Hayes. Finite-amplitude waves in deformed Mooney-Rivlin materials. Quarterly Journal of Mechanics and Applied Mathematics, 45:575–593, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • Ph. Boulanger, M. Hayes, and C. Trimarco. Finite-amplitude waves in deformed Hadamard elastic materials. Geophysics Journal International, 118:447–458, 1994.

    Article  Google Scholar 

  • M.M Carroll. Controllable deformations of incompressible simple materials. International Journal of Engineering Science, 5:515–525, 1967a.

    Article  Google Scholar 

  • M.M. Carroll. Some results on finite amplitude elastic waves. Acta Mechanica, 3:167–181, 1967b.

    Article  Google Scholar 

  • M.M. Carroll. On circularly-polarized nonlinear electromagnetic waves. Quarterly of Applied Mathematics, 25:319–323, 1967c.

    Google Scholar 

  • M.M. Carroll. Oscillatory shearing of nonlinearly elastic solids. ZAMP, 25:83–88, 1974a.

    Article  MATH  Google Scholar 

  • M.M. Carroll. Unsteady homothermal motions of fluids and isotropic solids. Archive for Rational Mechanics and Analysis, 53:218–228, 1974b.

    Article  MATH  MathSciNet  Google Scholar 

  • M.M. Carroll. Plane circular shearing of incompressible fluids and solids. Quarterly Journal of Mechanics and Applied Mathematics, 30:223–234, 1977a.

    Article  MATH  MathSciNet  Google Scholar 

  • M.M. Carroll. Plane elastic standing waves of finite amplitude. Journal of Elasticity, 7:411–424, 1977b.

    Google Scholar 

  • M.M. Carroll. Finite amplitude standing waves in compressible elastic solids. Journal of Elasticity, 8:323–328, 1978.

    Article  MathSciNet  Google Scholar 

  • M.M. Carroll. Reflection and transmission of circularly polarized elastic waves of finite amplitude. Journal of Applied Mechanics, 46:867–872, 1979.

    MATH  Google Scholar 

  • S. Catheline, J.L. Gennisson, and M. Fink. Measurement of elastic nonlinearity of soft solid with transient elastography. Journal of the Acoustical Society of America, 114:3087–3091, 2003.

    Article  Google Scholar 

  • P. Chadwick. Aspects of the dynamics of a rubberlike material. Quarterly Journal of Mechanics and Applied Mathematics, 27:263–287, 1974.

    Article  MATH  Google Scholar 

  • P. Chadwick. Continuum Mechanics. Allen & Unwin, 1976.

    Google Scholar 

  • P.J. Chen. Growth and decay of waves in solids. In C.A. Truesdell, editor, Handbuch der Physik, Vol. VIa/3. Springer, 1973.

    Google Scholar 

  • A.D.D. Craik. Time dependent solutions of the navier-stokes equations for spatially-uniform velocity gradients. Proceedings of the Royal Society of Edinburgh, Series A, 124:127–136, 1994.

    MATH  MathSciNet  Google Scholar 

  • P.K. Currie and M. Hayes. Longitudinal and transverse waves in finite elastic strain. Hadamard and Green materials. IMA Journal of Applied Mathematics, 5:140–161, 1969.

    Article  MATH  Google Scholar 

  • P.K. Currie and M. Hayes. On non-universal finite deformations. In D.E. Carlson and R.T. Shield, editors, Proceedings of the IUTAM Symposium on Finite Elasticity, pages 143–150. Nijhoff, 1981.

    Google Scholar 

  • C.M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics. Springer, 2000.

    Google Scholar 

  • H. Demiray and R.P. Vito. On large periodic motions of arteries. Journal of Biomechanics, 16:643–648, 1983.

    Article  Google Scholar 

  • M. Destrade and G. Saccomandi. On finite amplitude elastic waves propagating in compressible solids. Physics Reviews E, 72:0016620, 2005.

    Article  MathSciNet  Google Scholar 

  • M. Destrade and G. Saccomandi. Solitary and compact-like shear waves in the bulk of solids. Physics Reviews E, 73:065604, 2006.

    Article  MathSciNet  Google Scholar 

  • M. Destrade and G. Saccomandi. Waves and vibrations in a solid of second grade. In R. Monaco, G. Mulone, S. Rionero, and T. Ruggeri, editors, Proceedings of the 13 Conference on WASCOM 2005, pages 182–192. World Scientific, 2006a.

    Google Scholar 

  • J.L. Ericksen. Deformation possible in every incompressible isotropic perfectly elastic materials. ZAMP, 5:466–486, 1954.

    Article  MATH  MathSciNet  Google Scholar 

  • J.L. Ericksen. Deformation possible in every compressible isotropic perfectly elastic materials. Journal of Mathematics and Physics, 34:126–128, 1955.

    MathSciNet  Google Scholar 

  • A.C. Eringen. Nonlocal Continuum Field Theories. Springer, 2002.

    Google Scholar 

  • A.C. Eringen and E.S. Suhubi. Elastodynamics, Vol. I, Finite Motions. Academic Press, 1974.

    Google Scholar 

  • P.J. Flory. Thermodynamic relations for high elastic materials. Transactions of the Faraday Society, 57:829–838, 1961.

    Article  MathSciNet  Google Scholar 

  • R.L. Fosdick. Dynamically possible motions of incompressible, isotropic perfectly elastic materials. Archive for Rational Mechanics and Analysis, 29:272–288, 1968.

    MATH  MathSciNet  Google Scholar 

  • R.L. Fosdick and G.P. MacSithigh. Shearing motions and the formation of shocks in an elastic circular tube. Quarterly of Applied Mathematics, 38:191–207, 1980.

    MATH  MathSciNet  Google Scholar 

  • R.L. Fosdick and J.-H. Yu. Thermodynamics, stability and non-linear oscillations of viscoelastic solids. I. differential type solids of second grade. International Journal of Non-Linear Mechanics, 31:495–516, 2006.

    Article  MathSciNet  Google Scholar 

  • A.N. Gent. A new constitutive relation for rubber. Rubber Chemistry and Technology, 69:59–61, 1996.

    MathSciNet  Google Scholar 

  • Z.A. Gold’berg. Interaction of plane longitudinal and transverse wave. Akusticheskii Zhurnal, 6:307–310, 1960.

    Google Scholar 

  • O.B. Gorbacheva and L.A. Ostrovsky. Nonlinear vector waves in a mechanical model of a molecular chain. Physica D, 8:223–238, 1983.

    Article  MathSciNet  Google Scholar 

  • A.E. Green and R. S. Rivlin. Multipolar continuum mechanics. Archive for Rational Mechanics and Analysis, 17:113–147, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  • A.E. Green and R.T. Shield. Finite elastic deformation of incompressible elastic solids. Proceedings of the Royal Society of London, Series A, 202:407–419, 1950.

    MATH  MathSciNet  Google Scholar 

  • J. Hadamard. Leçons sur la Propagation des Ondes et les Equations de l’Hydrodynamique. Hermann, 1903.

    Google Scholar 

  • M.F. Hamilton, Y.A. Ilinski, and A.A. Zabolotskaya. Separation of compressibility and shear deformation in the elastic energy density. Journal of the Acoustical Society of America, 116:41–44, 2004a.

    Article  Google Scholar 

  • M.F. Hamilton, Y.A. Ilinski, and A.A. Zabolotskaya. Separation of compressibility and shear deformation in the elastic energy density. Journal of the Acoustical Society of America, 116:41–44, 2004b.

    Article  Google Scholar 

  • M.A. Hayes and G. Saccomandi. Finite amplitude transverse waves in special incompressible viscoelastic solids. Journal of Elasticity, 59:213–225, 2000.

    Article  MATH  Google Scholar 

  • J.M. Hill and H.H. Dai. Nonlinear plane waves in finite deformable infinite Mooney elastic materials. Journal of Elasticity, 67:71–80, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • J.M. Hill and J.L. Wegner. New families of exact nonlinear waves for the neo-Hookean finite elastic solid. Mathemathics and Mechanics of Solids, 9:81–95, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  • J.D. Humphrey and S. Na. Elastodynamics and arterial wall stress. Annals of Biomedical Engineering, 30:509–523, 2002.

    Article  Google Scholar 

  • F. John. Plane elastic waves of finite amplitude. Hadamard materials and harmonic materials. Communications on Pure and Applied Mathematics, 19:309–341, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Knowles. The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. International Journal of Fracture, 13:611–639, 1977.

    Article  MathSciNet  Google Scholar 

  • J.K. Knowles. Large amplitude oscillations of a tube of incompressible elastic material. Quarterly of Applied Mathematics, 18:71, 1960.

    MathSciNet  MATH  Google Scholar 

  • A.G. Kulikovskii, E.I. Sveshnikova, and A.P. Chugainova. Some problems in the nonlinear dynamic theory of elasticity. Proceedings of the Steklov Institute of Mathematics, 251:165–191, 2005.

    MathSciNet  Google Scholar 

  • L.D. Landau and E.M. Lifshitz. Theory of Elasticity. Pergamon, 1986.

    Google Scholar 

  • M. Levinson and I.W. Burgess. A comparison of some simple constitutive relations for slightly compressible rubber-like materials. International Journal of Mechanical Sciences, 13:563–572, 1971.

    Article  Google Scholar 

  • A.E.H. Love. A Treatise on the Mathematical Theory of Elasticity. Dover, 1944.

    Google Scholar 

  • C.E. Maneschy, M. Massoudi, and V.R. Velloso. Dynamic elastic solutions in neo-Hookean and Mooney-Rivlin materials. International Journal of Nonlinear Mechanics, 28:531–634, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • G.A. Maugin. Nonlinear Waves in Elastic Crystals. Oxford University Press, 1999.

    Google Scholar 

  • F.D. Murnaghan. Finite Deformation of an Elastic Solid. John Wiley, 1951.

    Google Scholar 

  • J.G. Murphy and F.J. Rooney. Rotation of cylinders of special compressible materials. International Journal Engineering Science, 30:213–221, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Norris. Finite amplitude waves in solids. In M.F. Hamilton and D.T. Blackstock, editors, Nonlinear Acoustics, pages 263–277. Academic Press, 1999.

    Google Scholar 

  • R.W. Ogden. Waves in isotropic elastic materials of Hadamard, Green or harmonic type. Journal of the Mechanics and Physics of Solids, 18:149–163, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  • R.W. Ogden. Large deformation isotropic elasticity: on the correlation of theory and experimental for compressible rubberlike solids. Proceedings of the Royal Society of London, Series A, 328:567–583, 1972.

    MATH  Google Scholar 

  • R.W. Ogden. Non-Linear Elastic Deformations. Ellis Horwood, 1984.

    Google Scholar 

  • A.V. Porubov. Amplification of Nonlinear Strain Waves in Solids. World Scientific, 2003.

    Google Scholar 

  • E. Pucci and G. Saccomandi. Universal solutions for constrained simple materials. International Journal of Nonlinear Mechanics, 33:469–484, 1999.

    MathSciNet  Google Scholar 

  • R. Quintanilla and G. Saccomandi. The importance of the compatibility of non-linear constitutive theories with their linear counterparts. ASME Journal of Applied Mechanics, page to appear, 2007.

    Google Scholar 

  • K.R. Rajagopal. A note on unsteady inhomogeneous extensions of a class of neo-Hookean elastic solids. Mathematical Proceedings of the Royal Irish Academy, Series A, 106:47–57, 2004.

    MathSciNet  Google Scholar 

  • K.R. Rajagopal and G. Saccomandi. On the dynamics of non-linear viscoelastic solids with material moduli that depend upon pressure. International Journal of Engineering Science, 91:to appear, 2007.

    Google Scholar 

  • R.S. Rivlin. Torsion of a rubber cylinder. Journal of Applied Physics, 18:444–449, 1947.

    Article  Google Scholar 

  • P. Rosenau. Dynamics of nonlinear mass-spring chains near the continuum limit. Physics Letters A, 118:222–227, 1986.

    Article  MathSciNet  Google Scholar 

  • M.B. Rubin, P. Rubin, and O. Gottlieb. Continuum model of dispersion caused by an inherent material characteristic length. Journal of Applied Physics, 77:4054–4063, 1995.

    Article  Google Scholar 

  • T. Ruggeri. Ondi di discontinuità ed equazioni costitutive nei corpi elastici isotropi sottoposti a deformazioni finite. Annali di Matematica Pura ed Appicata, 112:315–332, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Saccomandi. Universal results in finite elasticity. In Y.B. Fu and R.W. Ogden, editors, Nonlinear Elasticity: Theory and Applications, chapter 3. Cambridge University Press, 2001.

    Google Scholar 

  • G. Saccomandi. Elastic rods, weierstrass theory and special travelling waves solutions with compact support. International Journal of Non-Linear Mechanics, 39:331–339, 2004b.

    Article  MATH  MathSciNet  Google Scholar 

  • J.C. Simo and K.S. Pister. Remarks on rate constitutive equations for finite deformations. Computer Methods in Applied Mechanical Engineering, 46:201–215, 1984.

    Article  MATH  Google Scholar 

  • R.N. Thurston. Handbuch der Physik, 1974.

    Google Scholar 

  • C. Truesdell. General and exact theory of waves in finite elastic strain. Archive for Rational Mechanics and Analysis, 8:263–296, 1961.

    MATH  MathSciNet  Google Scholar 

  • C. Truesdell. Solutio generalis et accurata problematum quamplurimorum de motu corporum elasticorum incomprimibilium in deformationibus valde magnis. Archive for Rational Mechanics and Analysis, 11:106–113 (and Addendum pp. 427–428), 1962.

    Article  MathSciNet  Google Scholar 

  • C.C. Wang. Proof that all dynamic universal solutions are quasi-equilibrated. ZAMM, 50:311–314, 1970.

    Article  MATH  Google Scholar 

  • A.S. Wineman. Universal deformations of incompressible simple materials. University of Michigan Technical Report, 1967.

    Google Scholar 

  • S. Zahorski. Unsteady shearing flows and plane shear waves in simple fluids. Archives of Mechanics, 32:285–298, 1980.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated with affection and esteem to Tommaso Ruggeri on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2007 CISM, Udine

About this chapter

Cite this chapter

Saccomandi, G. (2007). Finite Amplitude Waves in Nonlinear Elastodynamics and Related Theories: A Personal Overview?. In: Destrade, M., Saccomandi, G. (eds) Waves in Nonlinear Pre-Stressed Materials. CISM Courses and Lectures, vol 495. Springer, Vienna. https://doi.org/10.1007/978-3-211-73572-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-73572-5_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-73571-8

  • Online ISBN: 978-3-211-73572-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics