Skip to main content

Full-Band Atomistic Study of Source-To-Drain Tunneling in Si Nanowire Transistors

  • Conference paper

Abstract

Source-to-drain tunneling is investigated for Si triple-gate nanowire transistors. The full-band quantum transport problem is solved in an atomistic basis using the nearestneighbor sp 3 d 5 s* tight-binding method. It is self-consistently coupled to the threedimensional calculation of the electrostatic potential in the device using the finite element method. This procedure is applied to the computation of I dV gs transfer characteristics of transistors with different channel orientations such as [100], [110], [111], and [112] for gate lengths ranging from 4 nm to 13 nm. The subthreshold swing S is then extracted from the results to determine the scaling limit of nanowire transistors.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-211-72861-1_52
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-3-211-72861-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Cui, Z. Zhong, D. Wang, J. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors”, Nano Lett., vol. 3, pp. 149–152, 2003.

    CrossRef  Google Scholar 

  2. M. Luisier G. Klimeck A. Schenk and W. Fichtner, “Atomistic Simulation of Nanowires in the sp 3 d 5 s Tight-Binding Formalism: from Boundary Conditions to Strain Calculations”, Phys Rev. B, vol. 74, pp. 205323, 2006.

    CrossRef  Google Scholar 

  3. J. C. Slater and G. F. Koster, “Simplified LCAO Method for the Periodic Potential Problem”, Phys. Rev., vol. 94, pp. 1498–1524, 1954.

    MATH  CrossRef  Google Scholar 

  4. T. B. Boykin, G. Klimeck, and F. Oyafuso, “Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization”, Phys. Rev. B, vol. 69, pp. 115201, 2004.

    CrossRef  Google Scholar 

  5. S. Lee, F. Oyafuso, P. von Allmen, and G. Klimeck, “Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures”, Phys. Rev. B, vol. 69, pp. 045316, 2004.

    CrossRef  Google Scholar 

  6. M. Luisier, A. Schenk, and W. Fichtner, “Three-Dimensional Full-Band Simulations of Si Nanowire Transistors”, IEDM, Tech. Dig. 2006, pp. 811–814, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Wien

About this paper

Cite this paper

Luisier, M., Schenk, A., Fichtner, W. (2007). Full-Band Atomistic Study of Source-To-Drain Tunneling in Si Nanowire Transistors. In: Grasser, T., Selberherr, S. (eds) Simulation of Semiconductor Processes and Devices 2007. Springer, Vienna. https://doi.org/10.1007/978-3-211-72861-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-72861-1_52

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-72860-4

  • Online ISBN: 978-3-211-72861-1

  • eBook Packages: EngineeringEngineering (R0)