Skip to main content

Hydrodynamics of Tsunami Waves

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 489))

Abstract

The giant tsunami that occurred in the Indian Ocean on 26th December 2004 draws attention to this natural phenomenon. The given course of lectures deals with the physics of the tsunami wave propagation from the source to the coast. Briefly, the geographical distribution of the tsunamis is described and physical mechanisms of their origin are discussed. Simplified robust formulas for the source parameters (dimension and height) are given for tsunamis of different origin. It is shown that the shallow-water theory is an adequate model to describe the tsunamis of the seismic origin; meanwhile for the tsunamis of the landslide or explosion origin (volcanoes, asteroid impact) various theories (from linear dispersive to nonlinear shallow-water equations) can be applied. The applicability of the existing theories to describe the tsunami wave propagation, refraction, transformation and climbing on the coast is demonstrated. Nonlinear-dispersive effects including the role of the solitons are discussed. The practical usage of the tsunami modeling for the tsunami forecasting and tsunami risk evaluation is described. The results of the numerical simulations of the two global tsunamis in the Indian Ocean induced by the catastrophic Krakatau eruption in 1883 and the strongest North Sumatra earthquake in 2004 are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • K. Aki, K. and P. Richards (1980). Quantitative Seismology, Theory and Methods. Freeman, San Francisco.

    Google Scholar 

  • S. Assier-Rzadkiewicz, P. Heinrich, P.C. Sabatier, B. Savoye and J.F. Bourillet (2000). Numerical modelling of a landslide-generated tsunami: the 1979 Nice event. Pure and Applied Geophysics, Vol. 157, 1707–27.

    Article  Google Scholar 

  • A. Belousov, B. Voight, M. Belousiva and Y. Muravyev (2000). Tsunamis generated by subaquatic volcanic explosions: unique data from 1996 eruption in Karymskoye Lake, Kamchatka, Russia. Pure and Applied Geophysics, Vol. 157, 1135–43.

    Article  Google Scholar 

  • E. Bryant (2001). Tsunamis. The underrated hazard. Cambridge University Press.

    Google Scholar 

  • G.F. Carrier and H.P. Greenspan (1958). Water waves of finite amplitude on a sloping beach. J. Fluid Mech., Vol. 4, 97–109.

    Article  MATH  MathSciNet  Google Scholar 

  • Y. Chen and P.L.-F. Liu (1995). Modified Boussinesq equations and associated parabolic models for water wave propagation. J. Fluid Mech., Vol. 228, 351–81.

    Article  Google Scholar 

  • K.F. Cheung, A.C. Phadke, Y. Wei, R. Rojas, Y.J.-M. Douyere, CD. Martino, S.H. Houston, P.L.-F. Liu, P.J. Lynett, N. Dodd, S. Liao and E. Nakazaki, E (2003). Modeling of storm-induced coastal flooding for emergency management. Ocean Engineering, Vol. 30, 1353–86.

    Article  Google Scholar 

  • B.H. Choi, E. Pelinovsky, I. Ryabov and S.J. Hong (2002). Distribution functions of tsunami wave heights, Natural Hazards Vol. 25, 1–21.

    Article  Google Scholar 

  • B.H. Choi, E. Pelinovsky, K.O. Kim and J.S. Lee (2003). Simulation of the transoceanic tsunami propagation due to the 1883 Krakatau volcanic eruption. Natural Hazards and Earth System Sciences, Vol. 3, 321–32.

    Article  Google Scholar 

  • D.A. Crawford and C.L. Mader (1998). Modeling asteroid impact and tsunami. Science Tsunami Hazards, Vol. 16, 21–30.

    Google Scholar 

  • M.W. Dingemans (1996). Water Wave Propagation over Uneven Bottom. World Sci., Singapore.

    Google Scholar 

  • P.G. Drazin and R.S. Johnson (1992). Solitons: An Introduction. Cambridge University Press.

    Google Scholar 

  • F.L Gonzalez, K. Satake, E.F. Boss and H.O. Mofjeld (1995). Edge wave and nontrapped modes of the 25 April 1992 Cape Mendocino tsunami. Pure and Applied Geophysics, Vol. 144, 409–26.

    Article  Google Scholar 

  • C. Goto, Y. Ogawa, N. Shuto and F. Imamura (1997). Numerical method of tsunami simulation with the leap-frog scheme (IUGG/IOC Time Project), IOC Manual, UNESCO, No. 35.

    Google Scholar 

  • S.T. Grilli, S. Vogelmann and P. Watts (2002). Development of a 3D numerical wave tank for modelling tsunami generation by underwater landslides, Engineering Analysis with Boundary Elements, Vol. 26, 301–13.

    Article  MATH  Google Scholar 

  • V.K. Gusiakov (2005). Tsunamis as destructive aftermath of oceanic impacts. Comet/-Asteroid Impacts and Human Society (Eds, P. Bobrowsky and H. Rickman), Springer.

    Google Scholar 

  • J.L. Hammack (1973). A note on tsunamis: their generation and propagation in an ocean of uniform depth. J. Fluid Mech., Vol. 60, 769–99.

    Article  MATH  Google Scholar 

  • T. Hatori (1966). Vertical displacement in a tsunami source area and the topography of the sea bottom. Bull. Earthquake Research Institute, Vol. 44, 1449–64.

    Google Scholar 

  • F. Heinrich, A. Mangeney, S. Guibourg and R. Roche (1998). Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles. Geophys. Research Letters, Vol. 25, 3697–700.

    Article  Google Scholar 

  • J.G. Hills and M.R Gods (1998). Tsunami from asteroid and comet impacts: the vulnerability of Europe. Science Tsunami Hazards, Vol. 16, 3–10.

    Google Scholar 

  • K. Kajiura (1963). The leading wave of a tsunami. Bull. Earthquake Research Institute, Vol. 41, 535–71.

    Google Scholar 

  • Ch. Kharif and E. Pelinovsky (2003). Physical mechanisms of the rogue wave phenomenon. European J Mechanics / B-Fluid, Vol. 22, 603–34.

    MATH  MathSciNet  Google Scholar 

  • Ch. Kharif and E. Pelinovsky (2005). Asteroid Impact Tsunamis. Comptes Rendus Physique, Vol. 6, 361–6.

    Article  Google Scholar 

  • E.A. Kulikov, A.B. Rabinovich, R.E. Thomson and B.D. Bornhold (1996). The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska. J. Geophys. Research, Vol. 101C, 6609–15.

    Article  Google Scholar 

  • J.F. Lander and P.A. Lockridge (1989). United States Tsunamis 1690–1988. NOAA, National Geophysical Data Center, Boulder.

    Google Scholar 

  • B. Le Mehaute and S. Wang (1996). Water waves generated by underwater explosion. World Sci., Singapore.

    MATH  Google Scholar 

  • P.J. Lynett, T.R. Wu and P.L.-F. Liu (2002). Modeling wave runup with depth-integrated equations. Coastal Engineering, Vol.46, 89–108.

    Article  Google Scholar 

  • C.L. Mader (1998). Modeling the Eltanin asteroid tsunami. Science Tsunami Hazards, Vol. 16, 17–20.

    Google Scholar 

  • P.A. Madsen, H.B. Bingham and H. Liu (2002). A new Boussinesq method for fully nonlinear waves from shallow to deep water. J. Fluid Mech., Vol. 462, 1–30.

    Article  MATH  MathSciNet  Google Scholar 

  • P.A. Madsen, H.B. Bingham and H.A. Schäffer (2003). Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis. Proc. Roy. Soc. London, Vol. A459, 1075–104.

    Google Scholar 

  • L. Manshinha and D.E. Smylie (1971). The displacement fields of inclined faults. Bull. Seism. Soc. America, Vol. 61, 1433–40.

    Google Scholar 

  • N. Mirchina, E. Pelinovsky and S. Shavratsky (1982). Parameters of tsunami waves in the source. Science Tsunami Hazards, Vol. 2, B1–B7.

    Google Scholar 

  • N.R. Mirchina and E.N. Pelinovsky (1988). Estimation of underwater eruption energy based on tsunami wave data. Natural Hazards, Vol. 1, 277–83.

    Article  Google Scholar 

  • T. Murty (1977). Seismic Sea Waves-Tsunamis, Bull. Dep. Fisheries, Canada.

    Google Scholar 

  • Y. Okada (1985). Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. America, Vol. 75, 1135–54.

    Google Scholar 

  • K.F. O’Loughlin and J.F. Lander (2003). Caribbean Tsunamis: A 500-year history from 1498–1998. Advances in Natural and Technological Hazards Research, 20. Kluwer, Dordrecht

    Google Scholar 

  • E.N. Pelinovsky (1982). Nonhnear Dynamics of Tsunami Waves. Gorky: Inst. Applied Phys. Press.

    Google Scholar 

  • E.N. Pelinovsky (1996). Tsunami Wave Hydrodynamics. Nizhny Novgorod: Inst. Applied Physics Press.

    Google Scholar 

  • E. Pelinovsky and R. Mazova (1992). Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles. Natural Hazards, Vol. 6, 227–49.

    Article  Google Scholar 

  • M.I. Rabinovich, A.B. Ezersky and P. Weidman (2000). The Dynamics of Patterns. World Sci., Singapore.

    MATH  Google Scholar 

  • F. Shi, R.A. Dalrymple, J.T. Kirby, Q. Chen and A. Kennedy (2001). A fully nonlinear Boussinesq model in generalized curvilinear coordinates. Coastal Engineering, Vol. 42, 337–58.

    Article  Google Scholar 

  • T. Simskin and R.S. Fiske (1983). Krakatau 1883-the volcanic eruption and its effects, Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • S.L. Soloviev, Ch, N. Go and Kh. S. Kim (1988). A Catalog of tsunamis in the Pacific, 1969–1982. Amerind Publishing Company, New Delhi, 1988.

    Google Scholar 

  • S.L. Soloviev, O.N. Solovieva, Ch.N. Go, Kh.S. Dim and N.A. Schetnikov (2000). Tsunamis in the Mediterranean Sea 2000 B.C.–2000 A.D. Advances in Natural and Technological Hazards Research, 13. Kluwer, Dordrecht.

    Google Scholar 

  • J.J. Stoker (1955). Water Waves, John Willey.

    Google Scholar 

  • C.E. Synolakis (1987). The runup of solitary waves. J. Fluid Mech., Vol. 185, 523–45.

    Article  MATH  Google Scholar 

  • C.E. Synolakis, P.L.-F. Liu, H. Yeh and G.F. Carrier (1997). Tsunamigenic seafloor deformations. Science, Vol. 278, 598–600.

    Article  Google Scholar 

  • V.V. Titov and F.I. Gonzalez (1997). Implementation and testing of the method of splitting tsunami (MOST) model. NOAA Technical Memorandum ERL PMEL-112; http://www.pmel.noaa.gov/tsunami/

    Google Scholar 

  • S.N. Ward (2001). Landslide tsunami. J. Geophys. Research, Vol. 106,11, 201–215.

    Google Scholar 

  • S.N. Ward and E. Asphaug (2000). Asteroid impact tsunami: a probabilistic hazard assessment. Icarus, Vol. 145, 64–78.

    Article  Google Scholar 

  • S.N. Ward and E. Asphaug (2003). Asteroid impact tsunami of 2880 March 16. Geophys. J. Int., Vol. 153, F6–F10.

    Article  Google Scholar 

  • P. Watts (2000). Tsunami features of solid block underwater landslides. J. Waterway, Port, Coastal and Ocean Engineering, Vol. 126, 144–52.

    Article  Google Scholar 

  • P. Watts, S.T. Grilli, J.T. Kirby, G.J. Fryer and D.R. Tappin (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Sciences, Vol. 3, 391–402.

    Article  Google Scholar 

  • G. Wei, J.T. Kirby, S.T. Grilli and R. Subramanya (1995). A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves. J. Fluid Mech., Vol. 294, 71–92.

    Article  MATH  MathSciNet  Google Scholar 

  • N. Zahibo, E. Pelinovsky, A. Kurkin and A. Kozelkov (2003). Estimation of far-field tsunami potential for the Caribbean Coast based on numerical simulation. Science Tsunami Hazards. Vol. 21, 202–22.

    Google Scholar 

  • A.C. Yalciner, E.N. Pelinovsky, E. Okal and C.E. Synolakis (2003). Submarine landslides and tsunamis. NATO Science Series: IV. Earth and Environmental Sciences, Kluwer, Vol. 21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 CISM, Udine

About this chapter

Cite this chapter

Pelinovsky, E. (2006). Hydrodynamics of Tsunami Waves. In: Grue, J., Trulsen, K. (eds) Waves in Geophysical Fluids. CISM International Centre for Mechanical Sciences, vol 489. Springer, Vienna. https://doi.org/10.1007/978-3-211-69356-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-69356-8_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-37460-3

  • Online ISBN: 978-3-211-69356-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics