Skip to main content

Involvement of type A monoamine oxidase in neurodegeneration: regulation of mitochondrial signaling leading to cell death or neuroprotection

  • Chapter

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 71))

Summary

In neurodegenerative diseases, including Parkinson’s and Alzheimer’s diseases, apoptosis is a common type of cell death, and mitochondria emerge as the major organelle to initiate death cascade. Monoamine oxidase (MAO) in the mitochondrial outer membrane produces hydrogen peroxide by oxidation of monoamine substrates, and induces oxidative stress resulting in neuronal degeneration. On the other hand, a series of inhibitors of type B MAO (MAO-B) protect neurons from cell death. These results suggest that MAO may be involved in the cell death process initiated in mitochondria. However, the direct involvement of MAO in the apoptotic signaling has been scarcely reported. In this paper, we present our recent results on the role of MAO in activating and regulating cell death processing in mitochondria. Type A MAO (MAO-A) was found to bind an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, and induce apoptosis in dopaminergic SH-SY5Y cells containing only MAO-A. To examine the intervention of MAO-B in apoptotic process, human MAO-B cDNA was transfected to SH-SY5Y cells, but the sensitivity to N-methyl(R)salsolinol was not affected, even though the activity and protein of MAO-B were expressed markedly. MAO-B oxidized dopamine with production of hydrogen peroxide, whereas in control cells expressing only MAO-A, dopamine autoxidation produced superoxide and dopamine-quinone, and induced mitochondrial permeability transition and apoptosis. Rasagiline and other MAO-B inhibitors prevent the activation of apoptotic cascade and induce prosurvival genes, such as bcl-2 and glial cell line-derived neurotrophic factor, in MAO-A-containing cells. These results demonstrate a novel function of MAO-A in the induction and regulation of apoptosis. Future studies will clarify more detailed mechanism behind regulation of mitochondrial death signaling by MAO-A, and bring out new strategies to cure or ameliorate the decline of neurons in neurodegenerative disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akao Y, Maruyama W, Shimizu S, Yi H, Nakagawa Y, Shamoto-Nagai M, Youdim MBH, Tsujimoto Y, Naoi M (2002a) Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem 82: 913–923

    Article  PubMed  CAS  Google Scholar 

  • Akao Y, Maruyama W, Yi H, Shamoto-Nagai M, Youdim MBH, Naoi M (2002b) An anti-Parkinson’s disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic bcl-2 in human dopaminergic SH-SY5Y cells. Neurosci Lett 326: 10510–10518

    Article  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nature Med 10: S18–S25

    Article  PubMed  Google Scholar 

  • Bach AWJ, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan S-W, Seeburg PH, Shih JC (1988) cDNA cloning of human monoamine oxidase A and B: Molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 85: 4934–4938

    Article  PubMed  CAS  Google Scholar 

  • Bindokas VP, Jordan J, Lee CC, Miller RJ (1996) Superoxide production in rat hippocampal neurons: Selective imaging with hydroethidine. J Neurosci 16: 1324–1336

    PubMed  CAS  Google Scholar 

  • Bossy-Wetzel E, Schwarzenbacher R, Lipton S (2004) Molecular pathways to neurodegeneration. Nature Med 10: S2–S9

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Carrillo MC, Minami C, Kitani K, Maruyama W, Ohashi K, Yamamoto T, Naoi M, Kanai S, Youdim MBH (2000) Enhancing effect of rasagiline on superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sci 67: 577–585

    Article  PubMed  CAS  Google Scholar 

  • Cases O, Seif I, Grimsby J, Gaspa P, Chen K, Pounin S, Müller U, Aguet M, Babinet C, Shih JC, De Maeyer E (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268: 1763–1766

    Article  PubMed  CAS  Google Scholar 

  • Cohen G, Farooqui R, Kesler N (1997) Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci USA 94: 4890–4897

    Article  PubMed  CAS  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in the cell death. Biochem J 341: 233–249

    Article  PubMed  CAS  Google Scholar 

  • Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are selective indicators of peroxynitrite in vitro: Implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1: 145–157

    Article  PubMed  CAS  Google Scholar 

  • Damier P, Kastner A, Agid Y, Hirsch EC (1996) Does monoamine oxidase type B play a role in dopaminergic nerve cell death in Parkinson’s disease? Neurology 46: 1262–1269

    PubMed  CAS  Google Scholar 

  • Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Amtonsson B, Martinou J-C (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144: 891–901

    Article  PubMed  CAS  Google Scholar 

  • DeZutter GS, Davis RJ (2001) Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Proc Natl Acad Sci USA 98: 6168–6173

    Article  CAS  Google Scholar 

  • Eckert A, Steiner B, Marques C, Leutz S, Roming H, Haass C, Muller WE (2001) Elevated vulnerability to oxidative tress-induced cell death and activation of caspase-3 by the Swedish amyloid precursor protein mutation. J Neurosci Res 64: 183–192

    Article  PubMed  CAS  Google Scholar 

  • Gargalidis-Moudanos C, Femaury A, Parini A (1997) Predominant expression of monoamine oxidase B isoform in rabbit renal proximal tubule: Regulation by I2 imidazoline ligands in intact cells. Mol Pharmacol 51: 637–643

    PubMed  CAS  Google Scholar 

  • Götz MF, Freyberger A, Riederer P (1990) Oxidative stress: a role in the pathogenesis of Parkinson’s disease. J Neural Transm [Suppl 29]: 241–249

    Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305: 626–269

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Manzimo L, Cabbat FS, Duvoisin RC (1985) Studies on the oxidation of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,5-tetrahydropyridine by monoamine oxidase B. J Neurochem 45: 1049–1054

    Article  PubMed  CAS  Google Scholar 

  • Kraml M (1965) A rapid microfluorometric determination of monoamine oxidase. Biochem Pharmacol 14: 1684–1686

    Article  Google Scholar 

  • Lan NC, Chen C, Shih JC (1989) Expression of functional human monoamine oxidase A and B cDNAs in mammalian cells. J Neurochem 52: 1625–1634

    Article  Google Scholar 

  • Lim LCC, Powell JF, Murray R, Gill M (1994) Monoamine oxidase A gene and bipolar affective disorder. Am J Hum Genet 54: 1122–1124

    PubMed  CAS  Google Scholar 

  • Malorni W, Giammarioli AM, Matarrese P, Piertrangeli P, Agostinelli E, Ciaccio A, Grassilli E, Mondovi N (1998) Protection against apoptosis by monoamine oxidase A inhibitors. FEBS Lett 426: 155–159

    Article  PubMed  CAS  Google Scholar 

  • Marcocci L, De Marchi U, Salvi M, Milella ZG, Nocera S, Agostinelli E, Mondovi B, Toninello A (2002) Tyramine and monoamine oxidase inhibitors as modulators of the mitochondrial membrane permeability transition. J Membrane Biol 188: 23–31

    Article  CAS  Google Scholar 

  • Maruyama W, Abe T, Tohgi H, Dostert P, Naoi M (1996) A dopaminergic neurotoxin, (R)-N-methylsalsolinol, increases in Parkinsonian cerebrospinal fluid. An Neurol 40: 119–122

    Article  CAS  Google Scholar 

  • Maruyama W, Naoi M, Kasamatsu T, Hashizume Y, Takahashi T, Kohda K, Dostert P (1997) An endogenous dopaminergic neurotoxin, N-methyl-(R)-salsolinol, induces DNA damage in human dopaminergic neuroblastoma SH-SY5Y cells. J Neurochem 69: 322–329

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Akao Y, Youdim MBH, Davis BA, Naoi M (2001a) Transfection-forced Bcl-2 overexpression and anti-Parkinson drug, rasagiline, prevent nuclear translocation of glyceraldehydes-3-phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. J Neurochem 78: 727–735

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Boulton AA, Davis BA, Dostert P, Naoi M (2001b) Enantiospecific induction of apoptosis by an endogenous neurotoxin Nmethyl(R)salsolinol, in dopaminergic SH-SY5Y cells: suppression of apoptosis by N-(2-heptyl)-N-methylpropargylamine. J Neural Transm 108: 11–24

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Youdim MBH, Naoi M (2001c) Antiapoptotic properties of rasagiline, N-propargylamine-1(R)-aminoindan, and its optical (S)-isomer, TV1022. Ann NY Acad Sci 939: 320–329

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Nitta A, Shamoto-Nagai M, Hirata Y, Akao Y, Youdim M, Furukawa S, Nabeshima T, Naoi M (2004) N-Propargyl-1(R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-κB transcription factor. Neurochem Int 44: 393–400

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Dostert P, Hashizume Y, Nakahara D, Takahashi T, Ota M (1996) Dopamine-derived endogenous 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, N-methyl-(R)-salsolinol, induced parkinsonism in rat: Biochemical, pathological and behavioral studies. Brain Res 709: 285–295

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Nakao N, Ibi T, Sahashi K, Strolin Benedetti M (1998) (R)Salsolinol N-methyltransferase activity increases in parkinsonian lymphocytes. Ann Neurol 43: 212–216

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Yi H (2002a) Mitochondria determine the survival and death in apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, and neuroprotection by propargylamines. J Neural Transm [Suppl 109]: 607–621

    Article  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Yi H (2002b) Dopamine-derived endogenous N-methyl-(R)-salsolinol. Its role in Parkinson’s disease. Neurotoxicol Tera 24: 579–591

    Article  CAS  Google Scholar 

  • Naoi M, Maruyama W, Nagy GM (2004) Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: Occurrence. Metabolism and function in human brains. NeuroToxicol 25: 193–204

    Article  CAS  Google Scholar 

  • Naoi M, Maruyama W, Shamoto-Nagai M, Yi H, Akao Y, Tanaka M (2005) Oxidative stress in mitochondria; decision to survival and death of neurons in neurodegenertaion. Mol Neurobiol 31: 81–93

    Article  PubMed  CAS  Google Scholar 

  • O’Caroll AM, Fowler CJ, Phillips JP, Tobia I, Tipton KF (1988) The deamination of dopamine by human brain monoamine oxidase. Arch Pharmacol 322: 198–223

    Article  Google Scholar 

  • Parkinson Study Group (2004) A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol 61: 561–566

    Article  Google Scholar 

  • Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22: 197–217

    Article  PubMed  CAS  Google Scholar 

  • Teitel S, O’Brien J, Brossi A (1972) Alkaloids in mammalian tissue II. Synthesis of (+) and (−)substituted 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines. J Med Chem 15: 845–846

    Article  PubMed  CAS  Google Scholar 

  • Tipton KF, Boyce S, O’Sullivan J, Davey GP, Healy J (2004) Monoamine oxidases: Certainties and uncertainties. Curr Med Chem 11: 1965–1982

    PubMed  CAS  Google Scholar 

  • Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25: 439–456

    Article  PubMed  CAS  Google Scholar 

  • Wong WK, Chen K, Shih JC (2003) Decreased methylation and transcription repressor Sp3 up-regulated human monoamine oxidase (MAO) B expression during Caco-2 differentiation. J Biol Chem 278: 36227–36235

    Article  PubMed  CAS  Google Scholar 

  • Yi H, Maruyama W, Akao Y, Takahashi T, Iwasa K, Youdim MBH, Naoi M (2006) N-Propargylamine protects SH-SY5Y cells from apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, through stabilization of mitochondrial membrane and induction of anti-apoptotic Bcl-2. J Neural Transm 113: 21–32

    Article  PubMed  CAS  Google Scholar 

  • Yi H, Akao Y, Maruyama W, Chen K, Shih J, Naoi M (2006) Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-Methyl(R)salsolinol, leading to apoptosis in SH-SY5Y cells. J Neurochem 96: 541–549

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Gross A, Finberg JPM (2001) Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 132: 500–506

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Maruyama W, Naoi M (2005) Neuropharmacological, neuroprotective and amyloid precursor processing properties of selective MAO-B inhibitor antiparkinsonian drug, rasagiline. Drug Today 41: 369–391

    Article  CAS  Google Scholar 

  • Youdim MBH, Bar Am O, Yogev-Falach M, Weinreb O, Maruyama W, Naoi M, Amit T (2005b) Rasagiline: neurodegeneration, neuroprotection, and mitochondrial permeability transition. J Neurochem Res 79: 172–179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Naoi, M., Maruyama, W., Akao, Y., Yi, H., Yamaoka, Y. (2006). Involvement of type A monoamine oxidase in neurodegeneration: regulation of mitochondrial signaling leading to cell death or neuroprotection. In: Parvez, H., Riederer, P. (eds) Oxidative Stress and Neuroprotection. Journal of Neural Transmission. Supplementa, vol 71. Springer, Vienna. https://doi.org/10.1007/978-3-211-33328-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33328-0_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33327-3

  • Online ISBN: 978-3-211-33328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics