Skip to main content

Neuroprotection for Parkinson’s disease

  • Chapter
Oxidative Stress and Neuroprotection

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 71))

Summary

Although still a disorder of unknown etiology, Parkinson’s disease (PD) has provided a number of clues that have led to clinical trials of neuroprotection. For example, defects in mitochondrial metabolism and evidence for oxidative stress in PD have fostered therapeutic interventions aimed at slowing disease progression. More than a dozen compounds already have been tested in PD for disease modification, and others are in planning stages for clinical trials. The challenge is to find a highly effective therapy halting disease progression (beyond the relatively modest clinical effect exemplified by recent findings with coenzyme Q-10 treatment administered at 1200 mg/day). Clinical exam-based ratings and disability assessments still serve at providing the primary evidence of efficacy. However, with surrogate biomarkers such as radiotracer neuroimaging of the dopaminergic system, the pace of clinical investigation can be increased. Recent years have seen the utilization of more sensitive study methods in PD neuroprotection research, such as staggered wash-in, 2 × 2 factorial, and “futility” trial designs. The results of several ongoing PD neuroprotection trials are planned for release in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramova NA, Cassarino DS, Khan SM, Painter TW, Bennett JP Jr (2002) Inhibition by R(+) or S(−) pramipexole of caspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide in SH-SY5Y neuroblastoma. J Neurosci Res 67: 494–500

    Article  PubMed  CAS  Google Scholar 

  • Akao Y, Youdim MB, Davis BA, Naoi M, Rabey JM (2001) Rasagiline mesylate, a new MAO-B inhibitor for the treatment of Parkinson’s disease: a double-blind study as adjunctive therapy to levodopa. J Neurochem 78: 727–735

    Article  PubMed  Google Scholar 

  • Anderson DW, Neavin T, Smith JA, Schneider JS (2001) Neuroprotective effects of pramipexole in young and aged MPTP-treated mice. Brain Res 905: 44–53

    Article  PubMed  CAS  Google Scholar 

  • Andringa G, Cools AR (2000) The neuroprotective effects of CGP 3466B in the best in vivo model of Parkinson’s disease, the bilaterally MPTP-treated rhesus monkey. J Neural Transm [Suppl 60]: 215–225

    Google Scholar 

  • Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie M, Morris MJ, Mouradian MM, Chase TN (2003) Adenosine A2A receptor antagonist treatment of Parkinson’s disease. Neurology 61: 293–296

    PubMed  CAS  Google Scholar 

  • Besirli CG, Johnson EM Jr (2003) JNK-independent activation of c-Jun during neuronal apoptosis induced by multiple DNA-damaging agents. J Biol Chem 278: 22357–22366

    Article  PubMed  CAS  Google Scholar 

  • Bilsland JG, Harper SJ (2003) CEP-1347 promotes survivaI of NGF responsive neurones in primary DRG explants. Neuroreport 14: 995–999

    Article  PubMed  CAS  Google Scholar 

  • BjorkIund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 6: 537–544

    Article  Google Scholar 

  • Brooks DJ, Frey KA, Marek KL (2003) Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson’s disease. Exp Neurol 184[Suppl 1]: S68–S79

    Article  PubMed  CAS  Google Scholar 

  • Camp DM, Loeffler DA, LeWitt PA (2000) Levodopa does not enhance hydroxyl radical formation in the nigrostriatal dopamine system of rats with a unilateral 6-hydroxydopamine lesion. J Neurochem 74: 1229–1240

    Article  PubMed  CAS  Google Scholar 

  • Carlile GW, Chalmers-Redman RME, Tatton NA, et al. (2000) Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric gluteraldehyde-3-phosphate dehydrogenase to a dimer. Mol Pharmacol 57: 2–12

    PubMed  CAS  Google Scholar 

  • Carvey P, Pieri S, Ling Z (1997) Attenuation of levodopa-induced toxicity in mesencephalic cultures by pramipexole. J Neural Transm 104: 209–228

    Article  PubMed  CAS  Google Scholar 

  • Cassarino DS, Fall CP, Smith TS, Bennett JP Jr (1998) Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the Parkinsonian neurotoxin methylpyridinium ion. J Neurochem 71: 295–301

    Article  PubMed  CAS  Google Scholar 

  • Chase TN, Oh JD (2000) Striatal mechanisms and pathogenesis of parkinsonian signs and motor complications. Ann Neurol 47[Suppl 4]: S122–S129

    PubMed  CAS  Google Scholar 

  • Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, CastagnoIi K, Castagnoli N Jr, Schwarzschild MA (2001) Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21: RC143

    Google Scholar 

  • Clarke CE (2004) A “cure” for Parkinson’s disease: can neuroprotection be proven with current trial designs? Mov Disord 19: 491–49

    Article  PubMed  Google Scholar 

  • Djaldetti R, Ziv I, Melamed E (2002) The effect of deprenyI washout in patients with longstanding Parkinson’s disease. J Neural Transm 109: 797–803

    Article  PubMed  CAS  Google Scholar 

  • Elm JJ, Goetz CG, Ravina B, et al. (2005) A responsive outcome for Parkinson’s disease neuroprotection futility studies. Ann Neurol 57: 197–203

    Article  PubMed  Google Scholar 

  • Fahn S, Oakes D, Shoulson I, et al. (2004) Levodopa and the progression of Parkinson’s disease. N Engl J Med 351: 2498–2508

    Article  PubMed  CAS  Google Scholar 

  • Fearnley J, Lees AJ (1991) Aging and Parkinson’s disease: substantia nigra regional selectivity. Brain 114: 2283–2301

    PubMed  Google Scholar 

  • Felten DL, Felten SY, Fuller RW, et al. (1992) Chronic dietary pergolide preserves nigrostriatal neuronal integrity in aged Fischer 344 rats. Neurobiol Aging 13: 339–351

    Article  PubMed  CAS  Google Scholar 

  • Ferger B, Teismann P, Mierau J (2000) The dopamine agonist pramipexole scavenges hydroxyl free radicals induced by striataI application of 6-hydroxydopamine in rats: an in vivo microdialysis study. Brain Res 883: 216–223

    Article  PubMed  CAS  Google Scholar 

  • Giladi N, McDermott MP, Fahn S, et al. (2001) Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology 56: 1712–1721

    PubMed  CAS  Google Scholar 

  • Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial derived neurotrophic factor (GDNF) in Parkinson’s disease. Nature Med 9: 589–595

    Article  PubMed  CAS  Google Scholar 

  • Goetz CG, Leurgans S, Raman R, Parkinson Study Group (2002) Placebo-associated improvements in motor function: comparison of subjective and objective sections of the UPDRS in early Parkinson’s disease. Mov Disord 17: 283–288

    Article  PubMed  Google Scholar 

  • Grunblatt E, Mandel S, Maor G, Youdim MB (2001) Effects of R-and S-apomorphine on MPTP-induced nigro-striatal dopamine neuronal loss. J Neurochem 77: 146–156

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Andrus PK, Oostveen JA, et al. (1996) Neuroprotective effects of ramipexole against post-ischemic or methamphetamine-induced degeneration of nigrostriatal neurons. Mov Disord 11[Suppl 1]: 191

    Google Scholar 

  • Harris CA, Deshmukh M, Tsui-Pierchala B, et al. (2002) Inhibition of the c-Jun N-terminal kinase signaling pathway by the mixed lineage kinase inhibitor CEP-1347 (KT7515) preserves metabolism and growth of trophic factor-deprived neurons. J Neurosci 22: 103–113

    PubMed  CAS  Google Scholar 

  • He Y, Appel S, Le W (2001) Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection in mouse striatum. Brain Res 909: 187–193

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Terleckyj I, Sieber BA (1990) Monoamine oxidase and the bioactivation of MPTP and related neurotoxins: relevance to DATATOP. J Neural Transm [Suppl 32]: 217–227

    CAS  Google Scholar 

  • Hettinger BD, Lee A, Linden J, Rosin DL (2001) Ultatrstructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 431: 331–346

    Article  PubMed  CAS  Google Scholar 

  • Hilker R, Schweitzer K, Coburger S, et al. (2005) Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa 18F-activity. Arch Neurol 62: 378–382

    Article  PubMed  Google Scholar 

  • Hirsch EC, Breidert T, Rousselet E, et al. (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann N YAcad Sci 991: 214–228

    Article  CAS  Google Scholar 

  • Hocherman S, Levin G, Giladi N, Youdim MB (1998) Deprenyl monotherapy improves visuo-motor control in early parkinsonism. J Neural Transm [Suppl 52]: 63–69

    CAS  Google Scholar 

  • Ikeda K, Kurokawa M, Aoyama S, Kuwana Y (2002) Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson’s disease. J Neurochem 80: 262–270

    Article  PubMed  CAS  Google Scholar 

  • Ishitani R, Kimura M, Sunaga K, Katsube N, Tanaka M, Chuang DM (1996a) An antisense oligonucleotide to glyceraldehyde-3-phosphatedehydrogenase blocks age-induced apoptosis of mature cerebrocortical neurons in culture. J Pharmacol Exptl Therap 278: 447–454

    CAS  Google Scholar 

  • Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM (1996b) Evidence that glyceraldehyde-3-phosphatedehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem 66: 928–935

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (2000) Cell death mechanism in Parkinson’s disease. J Neural Transm 107: 1–27

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53[Suppl 3]: S26–S38

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Kosaka T, Kakimura JI, Matsuoka Y, Kohno Y, Nomura Y, Taniguchi T (1998) Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol 54: 1046–1054

    PubMed  CAS  Google Scholar 

  • Kragten E, Lalande I, Zimmerman K, et al. (1998) Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(−)-deprenyl. J Biol Chem 273:5821–5828

    Article  PubMed  CAS  Google Scholar 

  • Larsen JP, Boas J, Erdal JE (1999) Does selegiline modify the progression of early Parkinson’s disease? Results from a five-year study. The Norwegian-Danish Study Group. Eur J Neurol 6: 539–547

    Article  PubMed  CAS  Google Scholar 

  • Le WD, Jankovic J, Xie W, Appel SH (2000) Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection. J Neural Transm 107: 1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Le W-D, Jankovic J (2001) Are dopamine receptor agonists neuroprotective in Parkinson’s disease? Drugs and Aging 18: 389–396

    Article  PubMed  CAS  Google Scholar 

  • LeWitt PA, Galloway M, Matson W, Milbury P, McDermott M, Srivastava DK, Oakes D, Parkinson Study Group (1992) Markers of dopamine metabolism in Parkinson’s disease. Neurology 42: 2111–2117

    PubMed  CAS  Google Scholar 

  • LeWitt PA (2004) Clinical trials of neuroprotection for Parkinson’s disease. Neurology 63[7 Suppl 2]: S23–S31

    PubMed  Google Scholar 

  • LeWitt PA, Segel SA, Mistura KL, Schork MA (1993) Symptomatic anti-Parkinsonian effects of monoamine oxidase-B inhibition: comparison of selegiline and lazabemide. Clin Neuropharmacol 16: 332–337

    Article  PubMed  CAS  Google Scholar 

  • LeWitt PA, Oakes D, Cui L, Parkinson Study Group (1997) The need for levodopa as an endpoint of Parkinson’s disease progression in a clinical trial of selegiline and alphatocopherol. Mov Disord 12: 183–189

    Article  PubMed  CAS  Google Scholar 

  • Ling ZD, Robie HC, Tong CW, Carvey PM (1999) Both the antioxidant and D3 agonist actions of pramipexole mediate its neuroprotective actions in mesencephalic cultures. J Pharmacol Exp Ther 289: 202–210

    PubMed  CAS  Google Scholar 

  • Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330: 613–622

    Article  PubMed  CAS  Google Scholar 

  • Maki-Ikola O, Heinonen E (1986) Study design problems of DATATOP study analysis. Ann Neurol 40: 946–948

    Article  Google Scholar 

  • Mandel S, Grunblatt E, Riederer P, Gerlach M, Levites Y, Youdim MB (2003) Neuroprotective strategies in Parkinson’s disease: an update on progress. CNS Drugs 17: 729–762

    Article  PubMed  CAS  Google Scholar 

  • Marek K, Jennings D, Seibyl J (2002) Do dopamine agonists or levodopa modify Parkinson’s disease progression? Eur JNeurol 9[Suppl 3]: 15–22

    Article  Google Scholar 

  • Maroney AC, Glicksman MC, Basma AN, et al. (1998) Motoneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J Neurosci 18: 104–111

    PubMed  CAS  Google Scholar 

  • Maroney AC, Finn JP, Bozyczko-Coyne D, et al. (1999) CEP-1347 (KT 7515), an inhibitor of JNK activation, rescues sympathetic neurons and neuronally differentiated PC12 cells from death evoked by three distinct insults. J Neurochem 73: 1–12

    Article  Google Scholar 

  • Maruyama W, Akao Y, Youdim MB, et al. (2001) Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)-salsolinol. J Neurochem 78: 727–735

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Akao Y, Carrillo MC, et al. (2002) Neuroprotection by propylargylamines in Parkinson’s disease. Suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 24: 675–682

    Article  PubMed  CAS  Google Scholar 

  • Miklossy J, Doudet DD, Schwab C, et al. (2006) Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp Neurol 197: 275–283

    Article  PubMed  CAS  Google Scholar 

  • Muriel MP, Orieux G, Hirsch EC (2002) Levodopa but not ropinirole induces an internalization of Dl dopamine receptors in parkinsonian rats. Mov Disord 17: 1174–1179

    Article  PubMed  Google Scholar 

  • Myllylä VV, Sotaniemi KA, Vuorinen JA, Heinonen EH (1991) Selegiline as a primary treatment of Parkinson’s disease. Acta Neurol Stand [Suppl 136]: 70–72

    Google Scholar 

  • NINDS NET-PD Investigators (2006) A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 66: 664–671

    Article  CAS  Google Scholar 

  • Nutt JG, Burchiel KJ, Comella CL, et al. (2003) Randomized double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60: 69–73

    PubMed  CAS  Google Scholar 

  • Palhagen S, Heinonen EH, Hagglund J, et al. (1998) Selegiline delays the onset of disability in de novo parkinsonian patients. Swedish Parkinson Study Group. Neurology 51: 520–525

    PubMed  CAS  Google Scholar 

  • Parkinson J (1817) An essay on the shaking palsy. Sherwood, Neely, and Jones, London

    Google Scholar 

  • Parkinson Study Group (1989a) DATATOP: a multicenter controlled clinical trial in early Parkinson’s disease. Arch Neurol 46: 1052–1060

    Google Scholar 

  • Parkinson Study Group (1989b) Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 321: 1364–1371

    Article  Google Scholar 

  • Parkinson Study Group (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 328: 176–183

    Article  Google Scholar 

  • Parkinson Study Group (1994) A controlled trial of lazabemide (Ro 19-6327) in levodopa-treated Parkinson’s disease. Arch Neurol 51: 342–347

    Google Scholar 

  • Parkinson Study Group (1995) CSF homovanillic acid in the DATATOP study on Parkinson’s disease. Arch Neurol 52: 237–245

    Google Scholar 

  • Parkinson Study Group (1996) Effect of lazabemide on the progression of disability in early Parkinson’s disease. Ann Neurol 40: 99–107

    Article  Google Scholar 

  • Parkinson Study Group (2000a) Design of a clinical trial comparing pramipexole to levodopa in early PD (CALM-PD). Clin Neuropharmacol 23: 34–44

    Article  Google Scholar 

  • Parkinson Study Group (2000b) Pramipexole vs. levodopa as initial treatment for Parkinson disease. JAMA 284: 1931–1938

    Article  Google Scholar 

  • Parkinson Study Group (2002) Dopamine transporter brain imaging to assess the effects of pramipexole vs. levodopa on Parkinson disease progression. JAMA 287: 1653–1661

    Article  Google Scholar 

  • Pope-Coleman A, Schneider JS (1998) Effects of chronic GM1 ganglioside treatment on cognitieve and motor deficits in a slowly progressing model of Parkinsonism in non-human primates. Restor Neurol Neurosci 12: 255–266

    PubMed  CAS  Google Scholar 

  • Przedborski S (2005) Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism Relat Disord 11[Suppl 1]: S3–S7

    Article  PubMed  Google Scholar 

  • Rascal O, Brooks D, Korczyn A, et al. (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342: 1484–1491

    Article  Google Scholar 

  • Rascal O, Olanow CW, Brooks D, et al. (2002) A 2-year multicenter placebo-controlled, double-blind parallel group study of the effect of riluzole in Parkinson’s disease. Mov Disord 17: 39

    Google Scholar 

  • Ravina BM, Fagan SC, Hart RG, et al. (2003) Neuroprotective agents for clinical trials in Parkinson’s disease: A systematic assessment. Neurology 60: 1234–1240

    PubMed  CAS  Google Scholar 

  • Ravina B, Eidelberg D, Ahlskog JE, et al. (2005) The role of radiotracer imaging in Parkinson disease. Neurology 64: 208–215

    PubMed  CAS  Google Scholar 

  • Saporito MS, Brown EM, Miller MS, Carswell S (1999) CEP-1347/KT-7515, an inhibitor of c-Jun N-terminal kinase activation, attenuates the l-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. J Pharmacol Exp Ther 288: 421–427

    PubMed  CAS  Google Scholar 

  • Saporito MS, Thomas BA, Scott RW (2000) MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J Neurochem 75: 1200–1208

    Article  PubMed  CAS  Google Scholar 

  • Saporito MS, Hudkins RL, Maroney AC (2002) Discovery of CEP-1347/KT-7515, an inhibitor of the JNK/SAPK pathway for the treatment of neurodegenerative diseases. Prog Med Chem 40: 23–62

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS (1992) Effects of age on GM1 ganglioside-induced recovery of concentrations of dopamine in the striatum in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Neuropharmacology 31: 185–202

    Article  PubMed  CAS  Google Scholar 

  • Schwid SR, Parkinson Study Group (2002) CEP-1347 in Parkinson’s disease: a pilot study. Presented at the 7th International Congress of Parkinson’s disease and Movement Disorders (Miami, FIorida), November 10–14, 2002

    Google Scholar 

  • Sethy VH, Wu H, Oostveen JA (1997) Neuroprotective effects of the dopamine agonists. pramipexole and bromocriptine in 3-acetylpyridine-terted rats. Brain Res 754: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Shults CW, Oakes D, Kieburtz K, et al. (2002) Effects of coenzyme Q10 in early Parkinson’s disease: evidence for slowing of the functional decline. Arch Neural 59: 1541–1550

    Article  Google Scholar 

  • Spencer JP, Jenner A, Butler J, et al. (1996) Evaluation of the pro-oxidant and antioxidant actions of L-DOPA and dopamine in vitro: implications for Parkinson’s disease. Free Radic Res 24: 95–105

    PubMed  CAS  Google Scholar 

  • Studer L, Tabar V, McKay RDG (1998) Transplantation of expanded mesencephalic precursor lead to recovery in parkinsonian rats. Nature Neurosci 1: 290–295

    Article  PubMed  CAS  Google Scholar 

  • Takata K, Kitamura Y, Kakimura J, et al. (2000) Increase of bcl-2 protein in neuronal dendritic processes of cerebral cortex and hippocampus by the antiparkinsonian drugs, talipexole and pramipexole. Brain Res 872: 236–241

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Miyazaki I, Fujita N, et al. (2001) Molecular mechanism in activation of glutathione system by ropinirole, a selective dopamine D2 agonist. Neurochem Res 26: 31–36

    Article  PubMed  CAS  Google Scholar 

  • Tatton W, Chalmers-Redman R, Tatton N (2003) Neuroprotection by deprenyl and other propargylamines: glyceraldehyde-3-phosphate dehydrogenase rather than monoamine oxidase B. J Neural Transm 110: 509–515

    Article  PubMed  CAS  Google Scholar 

  • Tetrud JW, Langston JW (1989) The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 245: 519–522

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Le WD (2004) Minocycline: neuroprotective mechanisms in Parkinson’s disease. Curr Pharm Des 10: 679–686

    Article  PubMed  CAS  Google Scholar 

  • Tilley BC, Palesch YY, Kieburtz K, et al. (2006) Optimizing the ongoing search for new treatments for Parkinson disease: using futility designs. Neurololgy 66: 628–633

    Article  CAS  Google Scholar 

  • Vila M, Jackson-Lewis V, Guegan C, et al. (2001) The role of glial cells in Parkinson’s disease. Curr Opin Neurol 14: 483–489

    Article  PubMed  CAS  Google Scholar 

  • Vu TQ, Ling ZD, Ma SY, et al. (2000) Pramipexole attenuates the dopaminergic cell loss induced by intraventricular 6-hydroxydopamine. J Neural Transm 107: 159–176

    Article  PubMed  CAS  Google Scholar 

  • Ward CD (1994) Does selegiline delay progression of Parkinson’s disease? A critical re-evaluation of the DATATOP study. J Neurol Neurosurg Psychiatry 57: 217–220

    Article  PubMed  CAS  Google Scholar 

  • Whone AL, Watts RL, Stoessl AJ, et al. (2003) Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol 54: 93–101

    Article  PubMed  CAS  Google Scholar 

  • Wu DC, Jackson-Lewis V, Vila M, et al. (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22: 1763–1771

    PubMed  CAS  Google Scholar 

  • Youdim MB, Amit T, Bar-Am O, et al. (2003) Amyloid processing and signal transduction properties of antiparkinson-antialzheimer neuroprotective drugs rasagiline and TV3326. Ann NY Acad Sci 993: 378–386

    Article  PubMed  CAS  Google Scholar 

  • Zemke D, Majid A (2004) The potential of minocycline for neuroprotection in human neurologic disease. Clin Neuropharmacol 27: 293–298

    Article  PubMed  CAS  Google Scholar 

  • Zou L, Xu J, Jankovic J, He Y, et al. (2000) Pramipexole inhibits lipid peroxidation and reduces injury in the substantia nigra induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/G mice. Neurosci Lett 281: 167–170

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

LeWitt, P.A. (2006). Neuroprotection for Parkinson’s disease. In: Parvez, H., Riederer, P. (eds) Oxidative Stress and Neuroprotection. Journal of Neural Transmission. Supplementa, vol 71. Springer, Vienna. https://doi.org/10.1007/978-3-211-33328-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33328-0_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33327-3

  • Online ISBN: 978-3-211-33328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics