Skip to main content

Computational perspectives on neuromodulation of aging

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/2))

Abstract

Cognitive functions, such as memory, attention, and perception, decline with age. Besides other neuroanatomical changes, the level of dopamine also attenuates during aging. We review how computational modeling can provide insights in how these lifetime changes in dopamine levels are expressed at the behavioral level yielding a bridge across different levels. Results indicate that attenuation of dopamine lowers the signal to noise ratio providing a less distinctive neural representation, and detrimental cognitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnsten AFT (1998) Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn Sci 2: 436–447

    Article  Google Scholar 

  2. Arnsten AFT, Cai JX, Murphy BL, Goldmanrakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116: 143–151

    Article  PubMed  CAS  Google Scholar 

  3. Band GPH, Kok A (2000) Age effects on response monitoring in a mental-rotation task. Biol Psychol 51: 201–221

    Article  PubMed  CAS  Google Scholar 

  4. Braver TS (1997) Mechanisms of cognitive control: a neurocomputational model. Psychological Department, Carnegie Mellon University, Pittsburgh

    Google Scholar 

  5. Braver TS, Barch DM (2002) A theory of cognitive control, aging cognition, and neuromodulation. Neurosci Biobehav Rev 26: 809–817

    Article  PubMed  Google Scholar 

  6. Braver TS, Cohen JD (2001) Working memory, cognitive control, and the prefrontal cortex: computational and empirical studies. Cogn Process 2: 25–55

    Google Scholar 

  7. Bäckman L, Ginovart N, Dixon RA, Robins Wahlin T-B, Wahlin Å, Halldin C, Farde L (2000) Age-related cognitive deficits mediated by changes in the striatal dopamine system. Am J Psychiatry 157: 635–637

    Article  PubMed  Google Scholar 

  8. Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the Harold model. Psychol Aging 17: 85–100

    Article  PubMed  Google Scholar 

  9. Cass WA, Gerhardt GA (1995) In vivo assessment of dopamine uptake in rat medial prefrontal cortex: comparison with dorsal striatum and nucleus accumbens. J Neurochemistry 65: 201–207

    Article  CAS  Google Scholar 

  10. Cohen JD, Dunba K, McClelland JL (1990) On the control of automatic processes: a parallel distributed processing model of the Stroop effect. Psychol Rev 97: 332–361

    Article  PubMed  CAS  Google Scholar 

  11. Cohen JD, Servan-Schreiber D (1992) Context, cortex, and dopamine: a connectionist approach to behavior and biology in Schizophrenia. Psychol Rev 99: 45–77

    Article  PubMed  CAS  Google Scholar 

  12. Collins JJ, Imhoff P, Grigg P (1996) Noise-enhanced tactile sensation. Nature 383: 770

    Article  PubMed  CAS  Google Scholar 

  13. Craik FIM (1983) On the transfer of information from temporary to permanent memory. Philos Trans R Soc Lond B 302: 341–359

    Article  Google Scholar 

  14. Craik FIM, Salthouse TA (2000) The handbook of aging and cognition. NJ, Erlbaum

    Google Scholar 

  15. de Keyser J, Debacker JP, Vauquelin G, Ebinger G (1990) The effect of aging on the D1 dopamine receptors in the human cortex. Brain Res 528: 308–310

    Article  PubMed  Google Scholar 

  16. Durstewitz D, Seamans JK (2002) The computational role of dopamine D1 receptors in working memory. Neural Netw 15: 561–572

    Article  PubMed  Google Scholar 

  17. Erixon-Lindroth N, Farde L, Robins-Wahlin T-B, Sovago J, Halldin C, Bäckman L (2005) The role of the striatal dopamine transporter in cognitive aging. Psychiatry Res 138: 1–1

    Article  PubMed  CAS  Google Scholar 

  18. Ferrandez AM, Teasdale N (1996) Changes in sensory motor behavior in aging. New York, Elsevier Science

    Google Scholar 

  19. Fry AF, Hale S (2000) Relationship among processing speed, working memory, and fluid intelligens in children. Biol Psychol 54: 1–34

    Article  PubMed  CAS  Google Scholar 

  20. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error detection and compensation. Psychol Sci 4: 385–390

    Article  Google Scholar 

  21. Giorgi O, Calderini G, Toffano G, Biggio G (1987) D1 dopamine receptors labeled with 3H-SCH 23390: decrease in the striatum of aged rats. Neurobiol Aging 8: 51–54

    Article  PubMed  CAS  Google Scholar 

  22. Hasher L, Zacks RT (1988) Working memory, comprehension and aging: a review and a new view. The psychology of learning and motivation. G. H. Bower. New York, Academic Press 22: 193–225

    Google Scholar 

  23. Holroyd CB, Coles MGH (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109: 679–709

    Article  PubMed  Google Scholar 

  24. Kassinen V, Vilkman H, Hietala J, Nagren K, Helenius H, Olsson H, Farde L, Rinne JO (2000) Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiol Aging 21: 683–688

    Article  Google Scholar 

  25. Li S, Lindenberger U, Sikström S (2001) Aging Cognition: from neuromodulation to representation to cognition. Trends Cogn Sci 5: 479–486

    Article  PubMed  Google Scholar 

  26. Li S-C, Lindenberger U, Frensch PA (2000) Unifying cognitive aging: from neuromodulation to representation to cognition. Neurocomputing 32–33: 879–890

    Article  Google Scholar 

  27. Li S-C, Sikström S (2002) Integrative neurocomputational perspectives on cognitive aging, neuromodulation, and representation. Neurosci Biobehav Rev 26: 795–808

    Article  PubMed  Google Scholar 

  28. Li S-C, von Oertzen T, Lindenberger U (in press) A neurocomputationtional model of stochastic resonance and aging

    Google Scholar 

  29. Liu W, Lipsitz LA, Montero-Odasso M, Bean J, Kerrigan DC, Collins JJ (2002) Noise-enhanced vibrotactile sensitivity in older adults, patients with stroke, and patients with diabetic neuropathology. Arch Phys Med Rehabil 83: 171–176

    Article  PubMed  Google Scholar 

  30. MacRae PG, Spirduso WW, Wilcox RE (1988) Reaction time and nigrostriatal dopamine function: the effect of age and practice. Brain Res 451: 139–146

    Article  PubMed  CAS  Google Scholar 

  31. Murphy BL, Arnsten AFT, GoldmanRakic PS, Roth RH (1996) Increased dopamine levels turnover in the prefrontal cortext impairs spatical working memory performance in rats and monkeys. Proc Natl Acad Sci USA 93: 1325–1329

    Article  PubMed  CAS  Google Scholar 

  32. Nieuwenhuis S, Ridderinkhof KR, Talsma D, Coles MGH, Holroyd CB, Kok A, Van der Molen MW (2002) A computational account of altered error processing in older age: dopamine and the error-related negativity. Cogn Affect Behav Neurosci 2: 19–36

    PubMed  Google Scholar 

  33. Nilsson LG, Bäckman L, Erngrund K, Nyberg L, Adolfsson R, Bucht G, Karlsson S, Widing G, Winblad B (1997) The Betula prospective cohort study: memory, health, and aging. Aging Neuropsych Cogn 4: 1–32

    Article  Google Scholar 

  34. Park DC, Lautenschlager G, Hedden T, Davison N, Smith AD, Smith PK (2002) Models of visuospatial and verbal memory across the adult life span. Psychol Aging 17: 299–320

    Article  PubMed  Google Scholar 

  35. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurosci Neurophysiol 80: 1–27

    CAS  Google Scholar 

  36. Seamans JK, Floresco SB, Phillips AG (1998) D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 18: 1613–1621

    PubMed  CAS  Google Scholar 

  37. Servan-Schreiber D, Printz H, Cohen J (1990) A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249: 892–895

    Article  PubMed  CAS  Google Scholar 

  38. Sikström S (2004) The variance reaction time model. Cogn Psychol 48: 371–421

    Article  PubMed  Google Scholar 

  39. Simonotto E, Riani M, Seife C, Roberts M, Twitty JD, Moss F (1997) Visual perception of stochastic resonance. Phys Rev Lett 78: 1186–1189

    Article  CAS  Google Scholar 

  40. Simonotto E, Spano F, Riani M, Ferrari A, Levriero F, Pilot A, Renzetti P, Paodi R, Sardanelli F, Vitali P, Twitty J, Chiou-Tan F, Moss F (1999) fMRI studies of visual cortical activity during noise timulation. Neurocomputing 26–27: 511–516

    Article  Google Scholar 

  41. Spengler F, Godde B, Dinse HR (1995) Effects on aging on topographic organization of somatosensory cortex. NeuroReport 6: 469–473

    Article  PubMed  CAS  Google Scholar 

  42. Stevens CF, Cruz LA, Marks LE, Lakatos S (1998) A multimodal assessment of sensory threshold in aging. J Gerontol 53B: 263–272

    Google Scholar 

  43. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge, MA

    Google Scholar 

  44. Thimm G, Moerland P, Fiesler E (1996) The interchangeability of learning rate and gain in backpropagation neural networks. Neural computation 8: 451–460

    Article  PubMed  CAS  Google Scholar 

  45. Watanabe M, Kodama T, Hikosaka K (1997) Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol 78: 2795–2798

    PubMed  CAS  Google Scholar 

  46. Wells C, Ward LM, Chua R, Inglis JT (2005) Touch noise increases vibrotactile sensitivity in old and young. Psy Sci 16: 313–320

    Article  Google Scholar 

  47. West RL (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol Bull 120: 272–292

    Article  PubMed  CAS  Google Scholar 

  48. Wong DF, Young D, Wilson PD, Meltzer CC, Gjedde A (1997) Quantification of neuroreceptors in the living brain: III. D2-like dopamine receptors: theory, validation and changes during normal aging. J Cerebr Blood Flow Metab 17: 316–330

    CAS  Google Scholar 

  49. Zelinski EM, Stewart ST (1998) Individual differences in 16-year memory changes. Psychol Aging 13: 622–630

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sverker Sikström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Sikström, S. (2007). Computational perspectives on neuromodulation of aging. In: Sakas, D.E., Simpson, B.A. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/2. Springer, Vienna. https://doi.org/10.1007/978-3-211-33081-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33081-4_59

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33080-7

  • Online ISBN: 978-3-211-33081-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics