Skip to main content

Neural prostheses and biomedical microsystems in neurological rehabilitation

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/1))

Summary

Interfaces between electrodes and the neural system differ with respect to material and shape depending on their intended application and fabrication method. This chapter will review the different electrode designs regarding the technological implementation and fabrication process. Furthermore this book chapter will describe electrodes for interfacing the peripheral nerves like cuff, book or helix as well as electrodes for interfacing the cortex like needle arrays. The implantation method and mechanical interaction between the electrode and the nervous tissue were taken into consideration. To develop appropriate microtechnological assembling strategies that ensure proper interfacing between the tiny electrodes and microelectronics or connectors is one of the major challenges. The integration of electronics into the system helps to improve the reliability of detecting neural signals and reduces the size of the implants. Promising results with these novel electrodes will pave the road for future developments such as visual prosthetics or improved control of artificial limbs in paralyzed patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew WF, McCreery DB (1990) Neural prostheses — fundamental studies. Prentice Hall, Englewod Cliffs, NJ

    Google Scholar 

  2. Bai Q, Wise KD, Anderson DJ (2000) A high-yiel microassembly structure for three-dimensional microelectrode arrays. IEEE Trans Biomed Eng 47: 281–289

    Article  PubMed  CAS  Google Scholar 

  3. Bengtsson M, Wallman L, Drott J, Laurell T (1998) Porous silicon as an inherent surface enlarging layer for improved electrode performance in stimulation and recording applications. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 2229–2231

    Google Scholar 

  4. Branner A., Stein RB (2004) Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE Transactions on Biomedical Engineering 51: 146–157

    Article  PubMed  Google Scholar 

  5. Brindley GS (1972) Electrode array for making long-lasting electrical connections to spinal roots. J Physiol 222: 135

    Google Scholar 

  6. Brindley GS, Polkey CC, Rushton DN, Cardozo L (1986) Sacral anterior root stimulators for bladder control in paraplegia: the first 50 cases. J Neurol Neurosurg Psychiatry 49: 1104

    Article  PubMed  CAS  Google Scholar 

  7. Bullara LA (1984) Implantable electrode array. US Patent 623,981(4,573,481)

    Google Scholar 

  8. Campbell PK, Jones KE, Huber RJ, Horch K, Normann RA (1991) A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng 38: 758–768

    Article  PubMed  CAS  Google Scholar 

  9. Deman PR, Kaiser TM, Dirckx JJ, Offeciers FE, Peeters SA (2003) Design, construction and mechanical optimisation process of electrode with radial current flow in the scala tympani. J Neurosci Meth 128: 143–150

    Article  CAS  Google Scholar 

  10. Donaldson NDN, Taylor J, Winter J (2002) Velocity-selective recording using multi-electrode nerve cuffs. Proceedings of the 7th Annual Conference of the International Functional Electrical Stimulation Society, pp 121–123

    Google Scholar 

  11. Grill WM, Tarler MD, Mortimer JT (1994) Implantable helical spiral cuff electrode. US-Pattent 230342(5,505,201)

    Google Scholar 

  12. Guiraud D, Taroni G, Denis B, Couderc P, Stieglitz T (2000) Description of a sixteen-channel FES implantable system. Proceedings of the 5th Annual Conference of the International Functional Electrical Stimulation Society, pp 292–294

    Google Scholar 

  13. Guiraud D, Pacetti A, Meola E, Rabischong P (2001) One year implantated patients follow up: Suaw Project first results. Proceedings of the 6th Annual Conference of the International Functional Electrical Stimulation Society, pp 55–57

    Google Scholar 

  14. Hoogerwert AC, Wise KD (1994) A three dimensional microelectrode array for chromic neural recording. IEEE Transactions on Biomedical Engineering, pp 1136–1146

    Google Scholar 

  15. Kammer S, Wien S, Koch KP, Robitzki A, Stieglitz T (2002) Untersuchungen zur Abscheidung von Parylen C als Kapselungsmaterial für biomedizinische Mirkoimplantate. Biomedizinische Technik 47(1): 823–826

    Article  PubMed  Google Scholar 

  16. Koch KP (2003) Aufbau und Interation von intelligenten Mikroimplantaten zur dezentralen Stimulation und Ableitung in der Neuroprothetik. Fraunhofer IRB, Stuttgart

    Google Scholar 

  17. Koch KP, Leinenbach C, Stieglitz T (2000) Fabrication and test of robust pherical epimysial electrodes for lower limb stimulation. 5th Annual Conference of the International Functional Electrical Stimulation Society, pp 261–264

    Google Scholar 

  18. Koch KP, Kammer S, Boehler G, Hanauer M, Hoffmann KP (2005) Hybrid Cuff electrode for recording nerve signals from sacral nerves. Biomedizinische Technik 50(1): 82–83

    Google Scholar 

  19. Koller R, Girsch W, Liegl C et al (1992) Long-term results of nervous tissue alterations caused by epineurial electrode application: an experimental study in rat sciatic nerve. PACE 15: 108–115

    PubMed  CAS  Google Scholar 

  20. Lefurge T, Goodall E, Horch K, Stensaas L, Schoenberg A (1991) Chronically implanted intrafascicular recording electrodes. Ann Biomed Engineering 19: 197–207

    Article  CAS  Google Scholar 

  21. Loeb GE, Lan N (2002) Prosthetics, motor. In: Arbib MA (ed) Handbook of brain theory and neural networks. MIT-Press, Cambridge, pp 1–18

    Google Scholar 

  22. Margalit E, Maia M, Weiland JD et al (2002) Retinal prosthesis for the blind. Surv Ophthalmol 47: 335–356

    Article  PubMed  Google Scholar 

  23. Meyer JU, Stieglitz T, Ruf HH, Robitzki A, Dabouras V, Wewetzer K, Brinker TA (2002) Biohybrid microprobe for implantation into peripheral nervous systems. 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, pp 265–268

    Google Scholar 

  24. Muthuswamy J, Okandan M, Gilletti A, Baker MS, Jam T (2005) An array of microactuated microeletrodes for monitoring single-neuronal activity in rodents. IEEE Trans Biomed Eng 52: 1470–1477

    Article  PubMed  Google Scholar 

  25. Navarro X, Calvet S, Rodriguez CA et al (1998) Stimulation and recording from regenerated peripheral nerves through polyimide sieve electrodes. J Peripheral Nerv Syst 3: 91–101

    CAS  Google Scholar 

  26. Riso RR, Dalmose A, Schuettler M, Stieglitz T (2000) Activation of muscles in the pig forelimb using a large diameter multipolar nerve cuff installed on the radial nerve in the axilla. Proceedings of the 5th Annual Conference of the International Functional Electrical Stimulation Society, pp 272–275

    Google Scholar 

  27. Rousche PJ, Normann RA (1991) A method for pneumatically inserting an array of penetrating electrodes into cortial tissue. University of Utah, Salt Lake City, pp 413–423

    Google Scholar 

  28. Rousche PJ, Normann RA (1998) Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J Neurosci Meth 82: 1–15

    Article  CAS  Google Scholar 

  29. Rousche PJ, Pellinen DS, Pivin DP Jr, Williams JC, Vetter RJ, Kipke DR (2001) Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Transactions on Biomedical Engineering 48: 361–371

    Article  PubMed  CAS  Google Scholar 

  30. Schmit BD, Mortimer JT (1997) The tissue response to epimysial electrodes for diaphragm pacing in dogs. IEEE Transactions on Biomedical Engineering 44: 921–930

    Article  PubMed  CAS  Google Scholar 

  31. Schwarz M, Ewe L, Hauschild R et al (2000) Single chip CMOS imagers and flexible microelectronic stimulator for a retina implant system. Sens Actuators A (Phys) 83: 40–46

    Article  Google Scholar 

  32. Singh J, Peck RA, Loeb GE (2001) Delvelopment of BIONS Technology for functional electrical stimulation: hermetic packaging. Proceedings of the 23th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2: 1313–1316

    Google Scholar 

  33. Smith B, Tang Z, Johnson MW et al (1998) An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans Biomed Eng 45: 463–475

    Article  PubMed  CAS  Google Scholar 

  34. Stieglitz T, Blau C, Meyer JU (1996) Flexible, light-weighted electrodes to contact the peripheral nervous system. Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p 259

    Google Scholar 

  35. Taylor DM, Schwartz AB (2001) Using virtual reality to test the feasibility of controlling an upper limb FES system directly from multiunit activity in the motor cortex. Proceedings of the 6th Annual Conference of the International Functional Electrical Stimulation Society, pp 132–134

    Google Scholar 

  36. Tyler DJ, Durand DM (2002) Functional selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans Neural Syst Rehabili Eng 10: 294–304

    Article  Google Scholar 

  37. Wallman L, Levinsson A, Schouenbourg J et al (1999) Perforated silicon nerve chips with doped registration electrodes: in vitro performance and in vivo operation. IEEE Transactions on Biomedical Engineering 46: 1065–1073

    Article  PubMed  CAS  Google Scholar 

  38. Wallman L, Zhang Y, Laurell T, Danielsen N (2001) The geometric design of micromachined silicon sieve electrodes influences functional nerve regeneration. Biomaterials 22: 1187–1193

    Article  PubMed  CAS  Google Scholar 

  39. Wintermantel E, Ha S-W (1998) Biokompatible Werkstoffe und Bauweisen. Springer, Heidelberg

    Google Scholar 

  40. Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proceedings of the IEEE 92: 76–97

    Article  CAS  Google Scholar 

  41. Yoshida K, Jovanovic K, Stein RB (2000) Intrafascicular electrodes for stimulation and recording from mudpuppy spinal roots. J Neurosci Meth 96: 47–55

    Article  CAS  Google Scholar 

  42. Yoshida K, Pellinen D, Pivin D, Rousche P, Kipke D (2000) Development of the thin-film longitudinal intra-fascicular electrode. Proceedings of the 5th Annual Conference of the International Functional Electrical Stimulation Society, pp 279–281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Koch, K.P. (2007). Neural prostheses and biomedical microsystems in neurological rehabilitation. In: Sakas, D.E., Simpson, B.A., Krames, E.S. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/1. Springer, Vienna. https://doi.org/10.1007/978-3-211-33079-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33079-1_56

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33078-4

  • Online ISBN: 978-3-211-33079-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics