Skip to main content

Spinal cord stimulation in the treatment of post-stroke patients: current state and future directions

  • Chapter

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/1))

Summary

A decrease in cerebral blood flow (CBF) and brain metabolic activity are well-known complications of stroke. Spinal cord stimulation (SCS) is successfully being used for the treatment of several low-perfusion syndromes. The aim of this chapter is to describe the data that support the effect of SCS on CBF and the use of SCS in the treatment of stroke and cerebral low perfusion syndromes. In addition, we present our relevant studies. Since April 1995, we have assessed 49 non-stroke patients. The following parameters were measured pre- and post-stroke: 1) CBF in healthy contralateral tissue by single photon emission computed tomography (SPECT), 2) systolic and diastolic velocity in the middle cerebral artery (MCA) by transcranial Doppler, 3) blood flow quantifi- cation in the common carotid artery (CCA) by color Doppler, and 4) glucose metabolism in healthy contralateral tissue by positron emission tomography (PET). Our results showed that during cervical SCS there was a significant (p<0.001) increase in systolic (≥21%) and diastolic (>26%) velocity in the MCA, and CCA blood flow (≥51%) as well as glucose metabolism (44%). We concluded that cervical SCS (cSCS) can modify CBF and brain metabolism. Its potential role in the management of stroke and low-perfusion syndromes is further investigated by experimental studies and reports describing clinical experience. Appropriate clinical trials are warranted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Association AH (2004) American heart association. Heart disease and stroke statistics — 2005 Update. American Heart Association, Dallas, Tex

    Google Scholar 

  2. Broseta J, Barbera J, de Vera JA, Barcia-Salorio JL, Garcia-March G, Gonzalez-Darder J, Rovaina F, Joanes V (1986) Spinal cord stimulation in peripheral arterial disease. A cooperative study. J Neurosurg 64: 71–80

    PubMed  CAS  Google Scholar 

  3. Broseta J, Garcia-March G, Sanchez-Ledesma MJ, Goncalves J, Silva I, Barcia JA, Llacer JL, Barcia-Salorio JL (1994) Highcervical spinal cord electrical stimulation in brain low perfusion syndromes: experimental basis and preliminary clinical report. Stereotact Funct Neurosurg 62: 171–178

    Article  PubMed  CAS  Google Scholar 

  4. Clavo B, Robaina F, Catala L, Valcarcel B, Morera J, Carames MA, Ruiz-Egea E, Panero F, Lloret M, Hernandez MA (2003) Increased locoregional blood flow in brain tumors after cervical spinal cord stimulation. J Neurosurg 98: 1263–1270

    PubMed  Google Scholar 

  5. Clavo B, Robaina F, Montz R, Domper M, Carames MA, Morera J, Pinar B, Hernandez MA, Santullano V, Carreras JL (2006) Modification of glucose metabolism in brain tumors using cervical spinal cord stimulation. J Neurosurg (in press)

    Google Scholar 

  6. Ebel H, Schomacker K, Balogh A, Volz M, Funke J, Schicha H, Klug N (2001) High cervical spinal cord stimulation (CSCS) increases regional cerebral blood flow after induced subarachnoid haemorrhage in rats. Minim Invasive Neurosurg 44: 167–171

    Article  PubMed  CAS  Google Scholar 

  7. Garcia-March G, Sanchez-Ledesma MJ, Anaya J, Broseta J (1989) Cerebral and carotid haemodynamic changes following cervical spinal cord stimulation. An experimental study. Acta Neurochir Suppl 46: 102–104

    CAS  Google Scholar 

  8. Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, Brott T, Frankel M, Grotta JC, Haley EC Jr, Kwiatkowski T, Levine SR, Lewandowski C, Lu M, Lyden P, Marler JR, Patel S, Tilley BC, Albers G, Bluhmki E, Wilhelm M, Hamilton S (2004) Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 363: 768–774

    Article  PubMed  Google Scholar 

  9. Hautvast RW, Blanksma PK, DeJongste MJ, Pruim J, van der Wall EE, Vaalburg W, Lie KI (1996) Effect of spinal cord stimulation on myocardial blood flow assessed by positron emission tomography in patients with refractory angina pectoris. Am J Cardiol 77: 462–467

    Article  PubMed  CAS  Google Scholar 

  10. Hautvast RW, Ter Horst GJ, DeJong BM, DeJongste MJ, Blanksma PK, Paans AM, Korf J (1997) Relative changes in regional cerebral blood flow during spinal cord stimulation in patients with refractory angina pectoris. Eur J Neurosci 9: 1178–1183

    Article  PubMed  CAS  Google Scholar 

  11. Hosobuchi Y (1985) Electrical stimulation of the cervical spinal cord increases cerebral blood flow in humans. Appl Neurophysiol 48: 372–376

    Article  PubMed  CAS  Google Scholar 

  12. Hosobuchi Y (1991) Treatment of cerebral ischemia with electrical stimulation of the cervical spinal cord. Pacing Clin Electrophysiol 14: 122–126

    Article  PubMed  CAS  Google Scholar 

  13. Matsui T, Hosobuchi Y (1989) The effects of cervical spinal cord stimulation (cSCS) on experimental stroke. Pacing Clin Electrophysiol 12: 726–732

    Article  PubMed  CAS  Google Scholar 

  14. Meglio M, Cioni B, Visocchi M, Nobili F, Rodriguez G, Rosadini G, Chiappini F, Sandric S (1991) Spinal cord stimulation and cerebral haemodynamics. Acta Neurochir (Wien) 111: 43–48

    Article  CAS  Google Scholar 

  15. Momose T, Matsui T, Kosaka N, Ohtake T, Watanabe T, Nishikawa J, Abe K, Tanaka J, Takakura K, Iio M (1989) Effect of cervical spinal cord stimulation (cSCS) on cerebral glucose metabolism and blood flow in a vegetative patient assessed by positron emission tomography (PET) and single photon emission computed tomography (SPECT). Radiat Med 7: 243–246

    PubMed  CAS  Google Scholar 

  16. Robaina FJ, Dominguez M, Diaz M, Rodriguez JL, de Vera JA (1989) Spinal cord stimulation for relief of chronic pain in vasospastic disorders of the upper limbs. Neurosurgery 24: 63–67

    Article  PubMed  CAS  Google Scholar 

  17. Robaina F, Clavo B, Catala L, Carames MA, Morera J (2004) Blood flow increase by cervical spinal cord stimulation in middle cerebral and common carotid arteries. Neuromodulation 7: 26–31

    Article  Google Scholar 

  18. Robaina F, Clavo B, Catala L, Montz R, Carames MA, Otermin E, Morera J, Rodriguez MA, Santullano V, Carreras JL (2005a) Effect of spinal cord stimulation on cerebral blood flow and metabolism: a potential approach for stroke treatment. Neurology 64Suppl 1: A398 (abst)

    Google Scholar 

  19. Robaina F, Clavo B, Montz R, Ponce P, Lloret M, Morera J, Cabezon A, Carames MA, Hernandez MA, Carreras JL (2005b) Effect of cervical spinal cord stimulation on brain radiation necrosis. Neurology 64: A51 (abst)

    Article  CAS  Google Scholar 

  20. Sagher O, Huang DL (2000) Effects of cervical spinal cord stimulation on cerebral blood flow in the rat. J Neurosurg 93: 71–76

    PubMed  CAS  Google Scholar 

  21. Sagher O, Huang DL, Keep RF (2003) Spinal cord stimulation reducing infarct volume in a model of focal cerebral ischemia in rats. J Neurosurg 99: 131–137

    Article  PubMed  Google Scholar 

  22. International Stroke Trial Collaborative Group (1997) The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. Lancet 349: 1569–1581

    Article  Google Scholar 

  23. Visocchi M, Cioni B, Pentimalli L, Meglio M (1994) Increase of cerebral blood flow and improvement of brain motor control following spinal cord stimulation in ischemic spastic hemiparesis. Stereotact Funct Neurosurg 62: 103–107

    Article  PubMed  CAS  Google Scholar 

  24. Visocchi M, Giordano A, Calcagni M, Cioni B, Di Rocco F, Meglio M (2001) Spinal cord stimulation and cerebral blood flow in stroke: personal experience. Stereotact Funct Neurosurg 76: 262–268

    Article  PubMed  CAS  Google Scholar 

  25. Zhong J, Huang DL, Sagher O (2004) Parameters influencing augmentation of cerebral blood flow by cervical spinal cord stimulation. Acta Neurochir (Wien) 146: 1227–1234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Robaina, F., Clavo, B. (2007). Spinal cord stimulation in the treatment of post-stroke patients: current state and future directions. In: Sakas, D.E., Simpson, B.A., Krames, E.S. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/1. Springer, Vienna. https://doi.org/10.1007/978-3-211-33079-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33079-1_37

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33078-4

  • Online ISBN: 978-3-211-33079-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics