Skip to main content

Abstract

Despite the breadth of modern network theory, it can be difficult to apply its results to the task of uncovering terrorist networks: the most useful network analyses are often low-tech, link-following approaches. In the traditional military domain, detection theory has a long history of finding stealthy targets such as submarines. We demonstrate how the detection theory framework leads to a variety of network analysis questions. Some solutions to these leverage existing theory; others require novel techniques – but in each case the solutions contribute to a principled methodology for solving network detection problems. This endeavor is difficult, and the work here represents only a beginning. However, the required mathematics is interesting, being the synthesis of two fields with little common history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erdős, P., Rényi, A.: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl 5 (1960) 17–61

    Google Scholar 

  2. Szemerédi, E.: On sets of integers containing no kelements in arithmetic progression. Acta Arithmetica 27 (1975) 199–245

    MATH  MathSciNet  Google Scholar 

  3. Green, B., Tao, T.: The primes contain arbitrarily long arithmetic progressions. Annals of Mathematics 167 (2008) 481–547

    Article  MATH  MathSciNet  Google Scholar 

  4. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. John Wiley & Sons, New York (2000)

    MATH  Google Scholar 

  5. Bollobás, B.: Random Graphs. Cambridge University Press, New York (2001)

    MATH  Google Scholar 

  6. Milgram, S.: The small world problem. Psychology Today 2 (1967) 60–67

    Google Scholar 

  7. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press (1994)

    Google Scholar 

  8. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45 (2003) 167–256

    Article  MATH  MathSciNet  Google Scholar 

  9. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286 (October 1999) 509–512

    Google Scholar 

  10. Barabási, A.L.: Linked: How Everything Is Connected to Everything Else and What It Means. Plume (2002)

    Google Scholar 

  11. Watts, D.J.: Six Degrees, The Science of a Connected Age. W.W. Norton & Company (2003)

    Google Scholar 

  12. Bollobás, B., Janson, S., Riordan, O.: The phase transition in inhomogeneous random graphs. Random Structures and Algorithms 31(1) (2007) 3–122

    Article  MATH  MathSciNet  Google Scholar 

  13. Krebs, V.E.: Uncloacking terrorist networks. First Monday (2001)

    Google Scholar 

  14. Mifflin, T.L., Boner, C.M., Godfrey, G.A., Skokan, J.: A random graph model for terrorist transactions. In: 2004 IEEE Aerospace Conference Proceedings. (March 2004)

    Google Scholar 

  15. Mifflin, T., Boner, C., Godfrey, G., Greenblatt, M.: Detecting terrorist activities in the twentyfirst century: A theory of detection for transactional networks. In Popp, R.L., Yen, J., eds.: Emergent Information Technologies and Enabling Policies for Counter-Terrorism. Wiley- IEEE Press (2006) 349–365

    Google Scholar 

  16. Kay, S.M.: Fundamentals of Statistical Signal Processing, Vol. II, Detection Theory. Prentice Hall, NJ (1998)

    Google Scholar 

  17. DeGroot, M.H.: Optimal Statistical Decisions. McGraw–Hill, New York (1970)

    MATH  Google Scholar 

  18. Ferry, J., Lo, D.: Fusing transactional data to detect threat patterns. In: Proceedings of the 9th International Conference on Information Fusion. (July 2006)

    Google Scholar 

  19. Singer, K.: Random Intersection Graphs. PhD thesis, Johns Hopkins University, Baltimore, Maryland (1995)

    Google Scholar 

  20. Karónski, M., Scheinerman, E.R., Singer-Cohen, K.B.: On random intersection graphs: The subgraph problem. Combinatorics, Probability, and Computing 8 (1999) 131–159

    Article  MATH  MathSciNet  Google Scholar 

  21. Fill, J.A., Scheinerman, E.R., Singer-Cohen, K.B.: Random intersection graphs when m=ω(n): an equivalence theorem relating the evolution of the G(n,m, p) and G(n, p) models.Random Structures and Algorithms 16(2) (March 2000) 156–176

    Article  MATH  MathSciNet  Google Scholar 

  22. Stark, D.: The vertex degree distribution of random intersection graphs. Random Structures and Algorithms 24(3) (May 2004) 249–258

    Article  MATH  MathSciNet  Google Scholar 

  23. Behrisch, M., Taraz, A.: Efficiently covering complex networks with cliques of similar vertices. Theoretical Computer Science 355 (2006) 37–47

    Article  MATH  MathSciNet  Google Scholar 

  24. Godehardt, E., Jaworski, J.: Two models of random intersection graphs and their applications. Electronic Notes in Discrete Mathematics 10 (2001) 129–132

    Article  MathSciNet  Google Scholar 

  25. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distribution and their applications. Physical Review 64 (2001) 026118

    Google Scholar 

  26. Ellis, R.B., Ferry, J.P.: Estimating variance of the subgraph count in sparse Erdős-Rényi random graphs. submitted to Discrete Applied Mathematics (2008)

    Google Scholar 

  27. Bollobás, B.: Threshold functions for small subgraphs. Math. Proc. Cambridge Philos. Soc. 90(2) (1981) 197–206

    Article  MATH  MathSciNet  Google Scholar 

  28. Karoński, M., Ruciński, A.: On the number of strictly balanced subgraphs of a random graph. In: Graph theory. Volume 1018 of Lecture Notes in Mathematics. Springer, Berlin (1983) 79–83

    Google Scholar 

  29. Ruciński, A.: When are small subgraphs of a random graph normally distributed? Prob. Theory Related Fields 78 (1988) 1–10

    Article  MATH  Google Scholar 

  30. Durrett, R.: Random Graph Dynamics. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  31. Díaz, J., Mitsche, D., Pérez-Giménez, X.: On the connectivity of dynamic random geometric graphs. In: SODA ’08: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, Society for Industrial and Applied Mathematics (2008) 601–610

    Google Scholar 

  32. Parzen, E.: Stochastic processes. Holden-Day (1962)

    Google Scholar 

  33. Stone, L.D., Corwin, T.L., Barlow, C.A.: Bayesian Multiple Target Tracking. Artech House, Inc., Norwood, MA, USA (1999)

    Google Scholar 

  34. Lindelauf, R., Borm, P.E.M., Hamers, H.J.M.: The influence of secrecy on the communication structure of covert networks. CentER Discussion Paper 2008-23, Tilburg University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Ferry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien

About this chapter

Cite this chapter

Ferry, J.P., Lo, D., Ahearn, S.T., Phillips, A.M. (2009). Network Detection Theory. In: Memon, N., David Farley, J., Hicks, D.L., Rosenorn, T. (eds) Mathematical Methods in Counterterrorism. Springer, Vienna. https://doi.org/10.1007/978-3-211-09442-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-09442-6_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-09441-9

  • Online ISBN: 978-3-211-09442-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics