Skip to main content

Degree of Best Approximation by Blending Functions

  • Chapter
Multivariate Approximation Theory III

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 75))

Abstract

Practical problems in numerical analysis, especially in representing surfaces or solving integral equations, often require the approximation of bivariate functions by a combination of univariate functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheney, E.W., The best approximation of multivariate functions by combinations of univariate functions. In: Approxition Theory IV (C.K. Chui et al., Eds.), pp.1–26. New York-London: Academic Press 1983.

    Google Scholar 

  2. Cheney, E.W. v. Golitschek, M., The best approximation of bivariate functions by separable functions,. Contemporary Mathematics, Vol.21, pp.125–136. Providence: Amer. Math. Soc. 1983.

    Google Scholar 

  3. Gordon, W.J., Distributive lattices and the approximation of multivariate functions. In: Approximation with Special Emphasis on Spline Functions ( I.J. Schoenberg, Ed.) , pp. 223–277. New York: Academic Press 1969.

    Google Scholar 

  4. Gordon, W.J., Blending-function methods of bivariate and multivariate interpolation and approximation. SIAM J. Numer. Anal,. 8, 158–177 (1971)

    Article  Google Scholar 

  5. Haußmann, W. - Jetter, K. - Steinhaus, B., Degree of best approximation by trigonometric blending functions,. Mathematische Zeitschrift 189, 143–150 (1985).

    Article  Google Scholar 

  6. Haußmann, W. - Zeller, K., Mixed norm multivariate approximation with blending functions,. In: Constructive Theory of Functions ( Bl. Sendov et al., Eds.), pp. 403–408. Sofia: Bulgarian Academy of Sciences 1984.

    Google Scholar 

  7. Holmes, R.B., Geometric Functional Analysis and its-Applications. New York: Springer-Verlag 1975

    Google Scholar 

  8. Timan, A.F., Theory of Approximation of Functions of a Real Variable. New York: MacMillan 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

v. Golitschek, M. (1985). Degree of Best Approximation by Blending Functions. In: Schempp, W., Zeller, K. (eds) Multivariate Approximation Theory III. International Series of Numerical Mathematics, vol 75. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9321-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9321-3_18

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9995-6

  • Online ISBN: 978-3-0348-9321-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics