The cephalopod nervous system: What evolution has made of the molluscan design

Part of the Experientia Supplementum book series (EXS, volume 72)


The cephalopod nervous system is the most complex of any invertebrate nervous system. Although species-specific differences exist, its high level of complexity almost certainly is due to the cephalopods’ very active, fast-moving, predatory life style, and their complex behavior and extreme flexibility of response to different environmental situations. Nevertheless, the basic morphological plan of the cephalopod nervous system is still of the ganglionated “molluscan” design. During the course of evolution some of the ganglia became increasingly complex and subdivided into lobes; also, new ganglia were added. This chapter describes the basic morphological plan of the cephalopod nervous system and outlines some species-specific differences that developed as adaptations to different life styles. Special emphasis will be given to those features of the cephalopod nervous system that, within the invertebrates, are unusual or even unique, often rivaling the equivalent parts of the vertebrate nervous system in sophistication; some of these features may characterize higher brain and nervous system function.


Nerve Cord Granule Cell Layer Optic Lobe Basal Lobe Visceral Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, N.J., Lane, N. and Bundgaard M. (1986) The blood-brain interface in invertebrates. Ann. N.Y. Acad. Sci. 481: 20–41.PubMedCrossRefGoogle Scholar
  2. Aldred, R.G., Nixon, M. and Young, J.Z. (1983) Cirrothauma murrayi Chun, a finned octopod. Phil. Trans. R. Soc. Lond. B 301: 1–54.CrossRefGoogle Scholar
  3. Alexandrowicz, J.S. (1960) Innervation of the hearts of Sepia officincalis. Acta Zool. 41: 65–100.CrossRefGoogle Scholar
  4. Aronson, R.B. (1991) Ecology, paleobiology and evolutionary constraint in the octopus. Bull. Marine Sci. 49: 245–255.Google Scholar
  5. Auerbach, B. and Budelmann, B.U. (1986) Evidence for acetylcholine as neurotransmitter in the statocyst of Octopus vulgaris. Cell Tissue Res. 243: 429–436.CrossRefGoogle Scholar
  6. Bleckmann, H. Budelmann, B.U. and Bullock, T.H. (1991) Peripheral and central nervous responses evoked by small water movements in a cephalopod. J. Comp. Physiol. A 168: 247–257.PubMedGoogle Scholar
  7. Boycott, B.B. (1961) The functional organization of the brain of the cuttlefish Sepia officinalis. Proc. R. Soc. Lond. B 153: 503–534.CrossRefGoogle Scholar
  8. Boyle, P.R. (1986) Neural control of cephalopod behavior. In: A.O.D. Willows (ed.): The Mollusca, Vol. 9, Neurobiology and Behavior, Part 2, Academic Press, Orlando, pp. 1–99.Google Scholar
  9. Budelmann, B.U. (1976) Equilibrium receptor systems in molluscs. In: P.J. MIll (ed.): Structure and Function of Proprioceptors in the Invertebrates, Chapman and Hall, London, pp. 529–566.Google Scholar
  10. Budelmann, B.U. (1990) The statocysts of squid. In: D. Gilbert, H. Adelman and J. Arnold (eds): Squid as Experimental Animals. Plenum Press, New York, pp. 421–439.Google Scholar
  11. Budelmann, B.U. (1994) Cephalopod sense organs, nerves and the brain: adaptations for high performance and life style. Mar. Behav. Physiol. 25: 13–33.CrossRefGoogle Scholar
  12. Budelmann, B.U. and Bleckmann, H. (1988) A lateral line analogue in cephalopods: water waves generate microphonic potentials in the epidermal head lines of Sepia and Lolliguncula. J. Comp. Physiol. A 164: 1–5.PubMedCrossRefGoogle Scholar
  13. Budelmann, B.U. and Bonn, U. (1982) Histochemical evidence for catecholamines as neurotransmitters in the statocyst of Octopus vulgaris. Cell Tissue Res. 227: 475–483.PubMedCrossRefGoogle Scholar
  14. Budelmann, B.U. and Thies, G. (1977) Secondary sensory cells in the gravity receptor system of the statocyst of Octopus vulgaris. Cell Tissue Res. 182: 93–98.PubMedCrossRefGoogle Scholar
  15. Budelmann, B.U. and Young, J.Z. (1984) The statocyst-oculomotor system of Octopus vulgaris: eye muscles, eye muscle nerves, statocyst nerves, and the oculomotor centre in the central nervous system. Phil. Trans. R. Soc. Lond. B 306: 159–189.CrossRefGoogle Scholar
  16. Budelmann, B.U. and Young, J.Z. (1985) Central pathways of the nerves of the arms and mantle of Octopus. Phil. Trans. R. Soc. Lond. B 310: 109–122.CrossRefGoogle Scholar
  17. Budelmann, B.U. and Young, J.Z. (1987) Brain pathways of the brachial nerves of Sepia and Loligo. Phil. Trans. R. Soc. Lond. B 315: 345–352.CrossRefGoogle Scholar
  18. Budelmann, B.U. and Young, J.Z. (1993) The oculomotor system of decapod cephalopods: eye muscles, eye muscle nerves, and the oculomotor neurons in the central nervous system. Phil. Trans. R. Soc. Lond. B 340: 93–125.CrossRefGoogle Scholar
  19. Budelmann, B.U. Sachse, M. and Staudigl, M. (1987) The angular acceleration receptor system of Octopus vulgaris: morphometry, ultrastructure, and neuronal and synaptic organization. Phil. Trans. R. Soc. Lond. B 315: 305–343.CrossRefGoogle Scholar
  20. Bullock, T.H. (1984). Ongoing compound field potentials from octopus brain are labile and vertebrate-like. Electroencephalogr. Clin. Neurophysiol. 57: 473–483.PubMedCrossRefGoogle Scholar
  21. Bullock, T.H. (1986) “Simple” model systems need comparative studies: differences are as important as commonalities. Trends Neurosci. 9: 470–472.CrossRefGoogle Scholar
  22. Bullock, T.H. (1993) How are more complex brains different? Brain Behav. Evol. 41: 88–96.PubMedCrossRefGoogle Scholar
  23. Bullock, T.H. and Basar E. (1988) Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates. Brain Res. Rev. 134: 57–75.CrossRefGoogle Scholar
  24. Bullock, T.H. and Budelmann, B.U. (1991) Sensory evoked potentials in unanesthetized unrestrained cuttlefish: a new preparation for brain physiology in cephalopods. J. Comp. Physiol. A 168: 141–150.PubMedCrossRefGoogle Scholar
  25. Bullock, T.H. and Horridge, G.A. (1965) Structure and Function of the Nervous Systems of Invertebrates. Freeman, San Francisco and London.Google Scholar
  26. Bundgaard, M. and Abbott, N.J. (1992) Fine structure of the blood-brain interface in the cuttlefish Sepia officinalis (Mollusca, Cephalopoda). J. Neurocytol. 21: 260–275.PubMedCrossRefGoogle Scholar
  27. Colmers, W.F. (1981) Afferent synaptic connections between hair cells and the somata of intramacular neurons in the gravity receptor system of the statocyst of Octopus vulgaris. J. Comp. Neurol. 197: 385–394.PubMedCrossRefGoogle Scholar
  28. Cornwell, C.J., Messenger, J.B. and Williamson, R. (1993) Distribution of GABA-like immunoreactivity in the octopus brain. Brain Res. 621: 353–357.PubMedCrossRefGoogle Scholar
  29. Dilly, P.N., Nixon, M. and Young, J.Z. (1977) Mastigoteuthis — the whip-lash squid. J. Zool. Lond. 181: 527–559.CrossRefGoogle Scholar
  30. Dubas, F., Leonard, R.B. and Hanlon, R.T. (1986a) Chromatophore motoneurones in the brain of the squid, Lolliguncula brevis: an HRP study. Brain Res. 374: 21–29.PubMedCrossRefGoogle Scholar
  31. Dubas, F., Hanlon, R.T., Ferguson, G. and Pinsker, H. (1986b) Localization and stimulation of chromatophore motoneurones in the brain of the squid, Lolliguncula brevis. J. Exp. Biol. 121: 1–25.PubMedGoogle Scholar
  32. Fiorito, G. and Scotto, P. (1992) Observational learning in Octopus vulgaris. Science 256: 545–547.PubMedCrossRefGoogle Scholar
  33. Florey, E. (1969) Ultrastructure and function of cephalopod chromatophores. Am. Zool. 9: 429–442.PubMedGoogle Scholar
  34. Gilly, W.F. Hopkins, B. and Mackie, G.O. (1991) Development of giant motor axons and neural control of excape responses in squid embryos and hatchlings. Biol. Bull. 180: 209–220.CrossRefGoogle Scholar
  35. Gillette, R. (1991) The mollucan nervous system. In: C.L. Prosser (ed.): Neural and Integrative Animal Physiology, Wiley-Liss, New York, pp. 574–611.Google Scholar
  36. Gleadall, I.G. (1990) Higher motor function in the brain of Octopus: the anterior basal lobe and its analogies with the vertebrate basal ganglia. Ann. Appl. Inf. Sci. 16: 1–30.Google Scholar
  37. Gleadall, I.G. Ohtsu, K., Gleadall, E. and Tsukahara, Y. (1993) Screening-pigment migration in the Octopus retina includes control by dopaminergic efferents. J. Exp. Biol. 185: 1–16.Google Scholar
  38. Griffin, L.E. (1900) The anatomy of Nautilus pompilius. Mem. Acad. Sci. Wash. 8: 103–230.Google Scholar
  39. Hanlon, R.T. (1990) Maintenance, rearing, and culture of teuthoid and sepioid squids. In: D.L. Gilbert, W.J. Adelman and J.M. Arnold (eds): Squid as Experimental Animals, Plenum Press, New York, pp. 35–62.Google Scholar
  40. Hanlon, R.T. and Messenger, J.B. (1988) Adaptive coloration in young cuttlefish (Sepia officinalis L.): The morphology and development of body patterns and their relation to behaviour. Phil. Trans. R. Soc. Lond. B 320: 437–487.CrossRefGoogle Scholar
  41. Kier, W.M. (1988) The arrangement and function of molluscan muscle. In: E.R. Trueman and M.R. Clarke (eds): The Mollusca, Vol. 11, Form and Function, Academic Press, San Diego, pp. 211–252.Google Scholar
  42. Kier, W.M. and A.M. Smith (1990) The morphology and mechanics of Octopus sucker. Biol. Bull.178: 126–136.CrossRefGoogle Scholar
  43. Kime, D.E. and Messenger, J.B. (1990) Monoamines in the cephalopod CNS: an HPLC analysis. Comp. Biochem. Physiol. 96C: 49–57.Google Scholar
  44. Maddock, L. and Young, J.Z. (1987) Quantitative differences among the brains of cephalopods. J. Zool. Lond. 212: 739–767.CrossRefGoogle Scholar
  45. Mangold, K. (1989) Le système nerveux. In: P.P. Grassé (ed.): Traité de Zoologie, Vol. 5(4), Céphalopodes, Masson, Paris, pp. 163–240.Google Scholar
  46. Marquis, F. (1989) Die Embryonalentwicklung des Nervensystems von Octopus vulgaris Lam. (Cephalopoda, Octopoda), eine histologische Analyse. Verhandl. Naturf. Ges. Basel 99: 23–76.Google Scholar
  47. Martin, R. (1977) The giant nerve fibre system of cephalopods. Recent structural findings. Symp. Zool. Soc. Lond. 38: 261–275.Google Scholar
  48. Martin, R. and Miledi, R. (1986) The form and dimensions of the giant synapse of squids. Phil. Trans. R. Soc. Lond. B 312: 355–377.CrossRefGoogle Scholar
  49. Martin, R. and Voigt, K.H. (1987) The neurosecretory system of the octopus vena cava: A neurohemal organ. Experientia 43: 537–543.CrossRefGoogle Scholar
  50. Messenger, J.B. (1967) The peduncle lobe: a visuo-motor centre in Octopus. Proc. R. Soc. Lond. B 167: 225–251.PubMedCrossRefGoogle Scholar
  51. Messenger, J.B (1979) The nervous system of Loligo. IV. The peduncle and olfactory lobes. Phil. Trans. R. Soc. Lond. B 285: 275–309.CrossRefGoogle Scholar
  52. Messenger, J.B. (1991) Photoreception and vision in molluscs. In: J.R. Cronly-Dillon and R.L. Gregory (eds): Evolution of the Eye and the Visual System, McMillan, London, pp. 364–397.Google Scholar
  53. Moynihan, M. and Rodaniche, A.F. (1982) The Behavior and Natural History of the Caribbean Reef Squid Sepioteuthis sepioidea. Advances in Ethology 25. Paul Parey, Berlin, Hamburg.Google Scholar
  54. Naef, A. (1928) Die Cephalopoden (Embryologie). Fauna e Flora del Golfo di Napoli. Monografia 35(I, 2): 1–363. Bardi, Roma and Friedländer, Berlin.Google Scholar
  55. Novicki, A., Messenger, J.B., Budelmann, B.U., Terrell, M.L. and Kadekaro M. (1992) [14C]deoxyglucose labelling of functional activity in the cephalopod central nervous system. Proc. R. Soc. Lond. B 249: 77–82.CrossRefGoogle Scholar
  56. Otis, T.S. and Gilly, W.F. (1990) Jet-propelled escape in the squid, Loligo opalescens: Concerted control by giant and non-giant motor axon pathways. Proc. Natl. Acad. Sci. USA 87: 2911–2915.PubMedCrossRefGoogle Scholar
  57. Packard, A. (1972) Cephalopods and fish: the limits of convergence. Biol. Rev. 47: 241–307.CrossRefGoogle Scholar
  58. Pfefferkorn, A. (1915) Das Nervensystem der Octopoden. Z. Wiss. Zool. 114: 425–531.Google Scholar
  59. Plan, T. (1987) Functional Neuroanatomy of Sensory-Motor Lobes of the Brain of Octopus vulgaris. Dissertation, University of Regensburg, Regensburg, Germany.Google Scholar
  60. Preuss, T. and Budelmann, B.U. (1991) A new sense organ in cephalopods: sensory hair cells on the neck of the squid Lollinguncula brevis. Soc. Neurosci. Abstr. 17: 1403.Google Scholar
  61. Preuss, T. and Budelmann, B.U. (1995) Proprioceptive hair cells on the neck of the squid Lolliguncula brevis: a sense organ in cephalopods for the control of head-to-trunk position. Phil. Trans. R. Soc. Lond. B (submitted).Google Scholar
  62. Rowell, C.H.F. (1963) Excitatory and inhibitory pathways in the arm of Octopus. J. Exp. Biol. 40: 257–270.Google Scholar
  63. Rowell, C.H.F. (1966) Activity of interneurons in the arm of Octopus vulgaris in response to tactile stimulation. J. Exp. Biol. 44: 589–605.PubMedCrossRefGoogle Scholar
  64. Quast, M.J., Neumeister, H. and Budelmann, B.U. (1992) Tracking cobalt-labelled nerve pathways through an invertebrate brain (Sepia officinalis, Cephalopoda) by three-dimensional MR microscopy. Soc. Magn. Reson. Med. Abstr. Berlin.Google Scholar
  65. Schäfer, W. (1954) Form und Funktion der Brachyurenschere. Abhandl. Senckenberg. Naturforsch. Ges. 489: 1–66.Google Scholar
  66. Smith, P.J.S. and Boyle, P.R. (1983) The cardiac innervation of Eledone cirrhosa (Lamarck). (Mollusca: Cephalopoda). Phil. Trans. R. Soc. Lond. B 300: 493–511.CrossRefGoogle Scholar
  67. Tansey, E.M. (1979) Neurotransmitters in the cephalopod brain. Comp. Biochem. Physiol. 64C: 173–182.Google Scholar
  68. Tansey, E.M. (1980) Aminergic fluorescence in the cephalopod brain. Phil. Trans. R. Soc. Lond. 5 291: 127–145.Google Scholar
  69. Tasaki, K., Tsukahara, Y., Suzuki, H. and Nakaye, T. (1982) Two types of inhibition in the cephalopod retina. In: A. Kaneko, N. Tsukahara and K. Uchizono (eds): Neurotransmitters in the Retina and the Visual Centers, Biomedical Research Suppl., Tokyo, pp. 41–44.Google Scholar
  70. Thore, S. (1939) Beiträge zur Kenntnis der vergleichenden Anatomie des zentralen Nervensystems der dibranchiaten Cephalopoden. Pubbl. Staz. Zool. Napoli 17: 313–506.Google Scholar
  71. Tompsett, D.H. (1939) Sepia. L.M.B.C. Mem. typ. Br. mar. Pl. Anim. 32: 1–184.Google Scholar
  72. Tu, Y. and Budelmann, B.U. (1994) The effect of L-glutamate on the afferent resting activity in the cephalopod statocyst. Brain Res. 642: 47–58.PubMedCrossRefGoogle Scholar
  73. Wells, M.J. (1978) Octopus. Physiology and Behaviour of an Advanced Invertebrate. Chapman and Hall, London.Google Scholar
  74. Williamson, R. (1989) Electrophysiological evidence for cholinergic and catecholaminergic efferent transmitters in the statocyst of Octopus. Comp. Biochem. Physiol. 93C: 23–27.Google Scholar
  75. Williamson, R. and Budelmann, B.U. (1991) Convergent inputs to octopus oculomotor neurones deomonstrated in a brain slice preparation. Neurosci. Lett. 121: 215–218.PubMedCrossRefGoogle Scholar
  76. Young, J.Z. (1939) Fused neurons and synaptic contacts in the giant nerve fibres of cephalopods. Phil. Trans. R. Soc. Lond. B 229: 465–505.CrossRefGoogle Scholar
  77. Young, J.Z. (1962) The optic lobes of Octopus vulgaris. Phil. Trans. R. Soc. Lond. B 245: 19–58.CrossRefGoogle Scholar
  78. Young, J.Z. (1963) The number and sizes of nerve cells in Octopus. Proc. Zool. Soc. Lond. 140: 229–254.Google Scholar
  79. Young, J.Z. (1965a) The central nervous system of Nautilus. Phil. Trans. R. Soc. Lond. B 249: 1–25.CrossRefGoogle Scholar
  80. Young, J.Z. (1965b) The buccal nervous system of Octopus. Phil. Trans. R. Soc. Lond. B 249: 27–43.CrossRefGoogle Scholar
  81. Young, J.Z. (1967a) The visceral nerves of Octopus. Phil. Trans. R. Soc. Lond. B 253: 1–22.CrossRefGoogle Scholar
  82. Young, J.Z. (1967b) Some comparisons between the nervous systems of cephalopods and mammals. In: C.A.G. Wiersma (ed.): Invertebrate Nervous Systems. Their Significance for Mammalian Neurophysiology, University of Chicago Press, Chicago and London, pp. 353–362.Google Scholar
  83. Young, J.Z. (1971) The Anatomy of the Nervous System of Octopus vulgaris. Clarendon Press, Oxford.Google Scholar
  84. Young, J.Z. (1972) The organization of a cephalopod ganglion. Phil Trans. R. Soc. Lond. B 263: 409–429.CrossRefGoogle Scholar
  85. Young, J.Z. (1974) The central nervous system of Loligo. I. The optic lobe. Phil. Trans. R. Soc. Lond. B 267: 263–302.CrossRefGoogle Scholar
  86. Young, J.Z. (1976a) The “cerebellum” and the control of eye movements in cephalopods. Nature 264: 572–574.PubMedCrossRefGoogle Scholar
  87. Young, J.Z. (1976b) The nervous system of Loligo. II. Suboesophageal centres. Phil. Trans. R. Soc. Lond. 5 274: 101–167.Google Scholar
  88. Young, J.Z. (1977a) Brain, behaviour and evolution of cephalopods. Symp. Zool. Soc. Lond. 38: 377–434.Google Scholar
  89. Young, J.Z. (1977b) The nervous system of Loligo. III. Higher motor centres: The basal supraoesophageal lobes. Phil. Trans. R. Soc. Lond. B 276: 351–398.CrossRefGoogle Scholar
  90. Young, J.Z. (1979) The nervous system of Loligo. V. The vertical lobe complex. Phil. Trans. R. Soc. Lond. 5 285: 311–354.Google Scholar
  91. Young, J.Z. (1988) Evolution of the cephalopod brain. In: M.R. Clarke and E.R. Trueman (eds): The Mollusca, Vol. 12, Paleontology and Neontology, Academic Press, San Diego, pp. 215–228.Google Scholar
  92. Young, J.Z. (1991a) Computation in the learning system of cephalopods. Biol. Bull. 180: 200–208.CrossRefGoogle Scholar
  93. Young, J.Z. (1991b) Light has many meanings for cephalopods. Visual Neurosci. 7: 1–12.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  1. 1.The Marine Biomedical Institute, Department of OtolaryngologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations