Bass H., The degree of polynomial growth of finitely generated nilpotent group. Proc. Lond. Math. Soc. (3) 25, pp. 603–614, 1972.
MathSciNet
MATH
Google Scholar
Bellaïche A., The tangent space in sub-Riemannian geometry. This volume.
Google Scholar
Berestovskii V.N., Vershik A.M., Manifolds with intrinsic metrics and nonholonomic spaces. Advances in Sov. Math, vol (7) AMS 1992.
Google Scholar
Bethuel F., The approximation problem for Sobolev maps betwen two manifolds. Acta. Math., 167 (1991), pp. 153–206.
MathSciNet
MATH
CrossRef
Google Scholar
Bennequin D., Entrelacements et équations de Pfaff. Soc. Math. France, Astérisque 107–108 (1983), 83–161.
MathSciNet
Google Scholar
Valére Bouche L., The geodesies’ problem in Sub-Riemannian geometry. About the R. Montgomery’s example simplified by I. Kupka. Preprint du L.A.M.A. 92-06 (1992).
Google Scholar
Bryant R.L. and Griffiths P.A., Characteristic Cohomology of Differential systems (I): General Theory. J.-Amer.-Math.-Soc. 8 (1995), no. 3, 507–596.
MathSciNet
MATH
Google Scholar
Brockett R.W., Nonlinear Control Theory and Differential Geometry, Proc. of the Int. Congress of Mathematicians, Warszawa, (1983).
Google Scholar
Burago Y.D. and Zalgaller V.A.: Geometric inequalities. Springer, Berlin, Heidelberg 1988. [Russian edn.: Nauka, Moscow, 1980 ].
MATH
Google Scholar
Chow W.L., Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Annalen 117 (1939), pp. 98–105.
CrossRef
Google Scholar
Corlette K., Hausdorff dimensions of limit sets I, preprint (1989).
Google Scholar
D’Ambra G. and Gromov M., Lectures on transformation groups: geometry and dynamics, Surveys in Differential Geometry (Supplement to the Journal of Differential geometry), 1 (1991), pp. 19–111.
MathSciNet
Google Scholar
D’Ambra G., Nash C
1-embedding theorem for Carnot-Carathéodory metrics. Differential-Geom.-Appl. 5 (1995), no. 2, 105–119.
MathSciNet
MATH
CrossRef
Google Scholar
D’Ambra G., Construction of connection inducing maps between principal bundles. J. Diff. Geom. 26, (1987), pp. 67–79.
MathSciNet
MATH
Google Scholar
D’Ambra G., Induced subbundles and Nash’s implicit function theorem. Differential-Geom.-Appl. 4 (1994), no. 1, 91–105.
MathSciNet
MATH
CrossRef
Google Scholar
David G., Semmes S., Lipschitz mappings between dimensions, Unpublished manuscript.
Google Scholar
Dektjarev I.M., Problems of value distribution in dimension higher than one, Uspeki Mat. Nauk 25: 6 (1970), pp. 53–84.
MathSciNet
Google Scholar
Eells J. and Lemaire L., Another report on harmonic maps. Bull. London. Math. Soc. 20 (1988) 385–524, pp. 388.
MathSciNet
CrossRef
Google Scholar
Eliashberg Ya., Classification of overtwisted contact structures on manifolds, Invent. Math. 98 (1989), pp. 623–637.
MathSciNet
MATH
CrossRef
Google Scholar
Eliashberg Ya., Contact 3-manifolds, twenty years since J. Matinet’s work. Ann. Inst. Fourier 42 (1992), pp. 165–192.
MathSciNet
MATH
CrossRef
Google Scholar
Eliashberg Ya., New invariants of open symplectic and contact manifolds, J. Amer. Math. Soc. 4 (1991), pp. 513–520.
MathSciNet
MATH
CrossRef
Google Scholar
Eliashberg Ya., Filling by holomorphic disks and its applications, London Math. Soc. Lect. Notes Ser. 151 (1991), pp. 45–67.
MathSciNet
Google Scholar
Falconer K., Fractal Geometry. Mathematical Foundations and Applications. John Wiley and Sons. 1990.
Google Scholar
Fefferman C.L. and Phong D.H., Subelliptic eigenvalue problems, Proceedings of the Conference on Harmonic Analysis in Honor of Antoni Zygmund, Wadsworth Math. Series, pp. 590–606 (1981).
Google Scholar
Folland G.B., Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv for Mat. 13, pp. 161–207 (1975).
MathSciNet
MATH
CrossRef
Google Scholar
Fukawa K., Collapsing of Riemannian manifolds and eigenvalues of Laplacian operators, Invent. Math. 87 (1987), pp. 517–547.
Google Scholar
Gromov M. and Eliashberg J., Construction of nonsingular isoperimetric films, Trudy Steklov Inst. 116, (1971), pp. 18–33.
Google Scholar
Gromov M., Lafontaine J., Pansu P., Structures métriques pour les variétés Riemanniennes, Cedic-Fernand Nathan, Paris (1981).
MATH
Google Scholar
Ge Z., Betti numbers, characteristic classes and sub-Riemannian geometry, Illinois J. of Mathematics, 36 (1992), pp. 372–403.
MATH
Google Scholar
Ge Z., Collapsing Riemannian metrics to sub-Riemannian metrics and Laplacians to sub-Laplacians, Canadian J. Math., 1993, pp. 537–552.
Google Scholar
Ge Z., On the Global Geometry of Three-dimensional Sub-Riemannian Manifolds. II On Sub-Riemannian Metrics and SL
2
R-geometry. The Fields Institute for Research in Mathematical Sciences, Preprint 1994.
Google Scholar
Ge Z., Horizontal paths space and Carnot-Carathéodory metrics, Pacific J. of Mathematics, 161 (1993), pp. 255–286.
MATH
Google Scholar
Ge Z., On a variational problem and the spaces of horizontal paths, Pacific J. of Mathematics, 149 (1991), pp. 61–93.
MATH
Google Scholar
Giroux E., Topologie de contact en dimension 3, Séminaire Bourbaki, 1992–93, n° 760.
Google Scholar
Goodman R.W., Nilpotent Groups, the Structure, and the Application to Analysis, Lectures Notes in Math., vol. 562, Springer, 1977.
Google Scholar
Gromov M., Asymptotic invariants of infinite groups. Geometric group theory, Vol. 2 (Sussex, 1991 ), 1–295. London Math. Soc. Lecture Note Ser., 182. Cambridge Univ. Press, Cambridge, 1993.
Google Scholar
Gromov M., Asymptotic geometry of homogeneous spaces, Proceedings Rend. Sem. Mat. Univ. Politec. Torino (1983), Conférence on Homogeneous Spaces in Symp. Math., pp. 59–60.
Google Scholar
Gromov M., Convex integration of differential relations, Izv. Akad. Nauk. S.S.S.R. 33, 2, (1973), pp. 329–343.
MathSciNet
Google Scholar
Gromov M., Dimension, non-linear spectra and width, Springer-Verlag, Lecture Notes in Mathematics, 1317 (1988), pp. 132-1-85.
Google Scholar
Gromov M., Foliated plateau problem, parts I, II, Geometric and Functional Analysis 1: 1 (1991), pp. 14–79; (1991), pp. 253–320.
MathSciNet
MATH
CrossRef
Google Scholar
Gromov M., Filling Riemannian manifolds, Journal of Differential Geometry 18 (1983), pp. 1–147.
MathSciNet
MATH
Google Scholar
Gromov M., Groups of polynomial growth and expanding maps, Publications Mathématiques IHES 53 (1981), pp. 53–73.
MathSciNet
MATH
Google Scholar
Gromov M., Homotopical effects of dilatation. Journal of Differential Geometry 13 (1978) 303–310.
MathSciNet
MATH
Google Scholar
Gromov M., Hyperbolic groups, Essays in Group Theory, S. Gersten editor, MSRI Publications n° 8, Springer (1987), pp. 75–265.
Google Scholar
Gromov M., Hyperbolic manifolds, groups and actions, in “Riemannian Surfaces and Related Topics”, Ann. Math. Studies 97 (1981), pp. 183–215.
MathSciNet
Google Scholar
Gromov M., Metric invariants of Kähler manifolds, Differential geometry and topology (Alghero, 1992 ), 90–116. World Sci. Publishing, River Edge, NJ, 1993.
Google Scholar
Gromov M., Partial differential relations, Springer-Verlag (1986).
MATH
Google Scholar
Gromov M., Paul Levy’s isoperimetric inequality, Preprint IHES (1980).
Google Scholar
Gromov M., Stability and pinching. Sessions on Topology and Geometry of Manifolds (Italian) (Bologna, 1990 ), 55–97. Univ. Stud. Bologna, Bologna, 1992.
Google Scholar
Gromov M., Systoles and intersystolic inequalities. Preprint IHES (1993).
Google Scholar
Gromov M., Width and related invariants of Riemannian manifolds, Astérisque 163–164 (1988), pp. 93–109.
Google Scholar
Hart P., Ordinary differential equations. John Wiley and Sons. New York-London-Sydney. 1964.
Google Scholar
Hamenstädt U., Some regularity theorems for Carnot-Carathéodory metrics, J. Diff. Geom. 32 (1991), pp. 192–201.
Google Scholar
Hermann R., Differential Geometry and the Calculus of Variations, Math. Sci. Eng. 49, Academic Press, New-York, 1968.
Google Scholar
Hofer H., Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Inv. Math. 114 (3), pp. 515–585. 1993.
MathSciNet
MATH
CrossRef
Google Scholar
Holopainen I., Positive solutions of quasilinear elliptic equations on riemannian manifolds. Proc. London Math. Soc. (3) 65 (1992), pp. 651–672.
MathSciNet
MATH
Google Scholar
Holopainen I. and Rickman S., Quasiregular mappings of the Heisenberg group. Preprint (1991).
Google Scholar
Hörmander L., Hypoelliptic second order differential equations, Acta Math. 119, pp. 147–171 (1967).
MathSciNet
MATH
CrossRef
Google Scholar
Hsu L., Calclus of Variations via the Griffiths formalism, Journal of Differential Geometry 36 (1992), pp. 551–589.
MathSciNet
MATH
Google Scholar
Hsu L., Gromov’s h-principle for strongly bracket-generating distributions (IAS preprint: 1993)
Google Scholar
Hsu L., Sub-Riemannian Comparison Theorems for Contact Manifolds (IAS preprint: 1993).
Google Scholar
Jerison D. and Sánchez-Calle A., Subelliptic, second order differential operators. Lect. Notes in Math. 1277, pp. 46–77, Springer-Verlag 1987.
Google Scholar
Jost J., Equilibrium Maps between Metric Spaces. Ruhr-Universität Bochum, Preprint.
Google Scholar
Karcher H., Riemannian center of mass and mollifier smoothing. Comm. Pure and Appl. Math. 30 (1977), 509–541.
MathSciNet
MATH
CrossRef
Google Scholar
Karidi R., Geometry of balls in nilpotent Lie groups. Duke-Math.-J. 74 (1994), no. 2, 301–317.
MathSciNet
MATH
CrossRef
Google Scholar
Korevaar N., Upper bounds for eigenvalues of conformai metrics. J. Differential Geometry 37 (1993), pp. 73–93.
MathSciNet
MATH
Google Scholar
Koranyi A. and Reimann H.M., Foundations for the theory of quasiconformal mappings on the Heisenberg group. Preprint 1991.
Google Scholar
Lalonde F., Homologie de Shih d’une submersion (homologies non singulières des variétés feuilletées). Supplément au Bulletin de la Société Mathématique de France. 1978, Tome 115, Fascicule 4.
Google Scholar
Lee Y.I., The metric properties of Lagrangian surfaces. Dissertation of Stanford University for the degree of doctor of philosophy. 1992.
Google Scholar
Margulis G., Discrete groups of motions of manifolds of non-positive curvature (Russian), ICM 1974. Translated in A.M.S. Transi. (2) 109 (1977), pp. 33–45.
MathSciNet
Google Scholar
Mitchell J., A Local Study of Carnot-Carathéodory Metrics. Ph.D. Thesis. Stony Brook 1982.
Google Scholar
Mitchell J., On Carnot-Carathéodory metrics, J. Differ. Geom. 21 (1985), pp. 35–45.
MATH
Google Scholar
Montgomery R., Survey of singular geodesies, this volume.
Google Scholar
Mostow G.D., Strong rigidity of symmetric spaces, Ann. Math. Studies 78, Princeton (1973).
Google Scholar
Nagel A., Stein E.M. and Wainger S., Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155, pp. 103–147 (1985).
MathSciNet
MATH
CrossRef
Google Scholar
Nagata J-I., Modern dimension theory, North-Holland, 1965.
MATH
Google Scholar
Pansu P., Croissance des boules et des géodésiques fermées dans les nil-variétés, Ergod. Th. dynam. Syst. 3 (1983), pp. 415–445.
MathSciNet
MATH
Google Scholar
Pansu P., Une inégalité isopérimétrique sur le groupe d’Heisenberg, C.R. Acad. Sci. Paris 295 (1982), pp. 127–131.
MathSciNet
MATH
Google Scholar
Pansu P., Métriques de Carnot-Carathéodory et quasi-isométries des espaces symétriques de rang un, Annals of Maths. 129: 1 (1989), pp. 1–61.
MathSciNet
MATH
CrossRef
Google Scholar
Pansu P., Quasiconformal mappings and manifolds of negative curvature, in “Curvature and Top of Riemannian Manifolds” (Shiohama et al., eds), Lect. Notes in Math. 1201 (1986), pp. 212–230, Springer-Verlag.
CrossRef
Google Scholar
Pansu P., Géometrie du groupe d’Heisenberg. Thèse Univ. Paris V II, 1982.
Google Scholar
Pelletier F., et Valére Bouche L., Le problème des géodésiques en géométriesous-riemannienne singulière-II, C.-R.-Acad.-Sci.-Paris-Ser.-I-Math. 317 (1993), no. 1, 71–76.
Google Scholar
Pesin Ya. B, Dimension type characteristics for invariant sets of dynamical systems. Uspekhi Mat. Nauk 43: 4 (1988), pp. 95–128.
MathSciNet
Google Scholar
Pittet C., Isoperimetric Inequalities in Nilpotent Groups. Preprint 1994.
Google Scholar
Rashevski P.K., About connecting two points of complete nonholonomic space by admissible curve, (in Russian), Uch. Zapiski ped. inst. Libknexta, no. 2, pp. 83–94, (1938).
Google Scholar
Ruh E.A., Almost Lie groups, Proc ICM-1986, Berkeley, pp. 561–564, AMC 1987.
Google Scholar
Rumin M., Formes différentielles sur les variétés de contact. Thèse de Doctorat. Orsay 1992.
Google Scholar
Rumin M., Un complexe de formes différentielles sur les variétés de contact, C.R. Acad. Sci. Paris, t. 310 (1990), serie I., pp. 401–404.
Google Scholar
Sarychev A.A.V., On the homotopy type of the spaces of trajectories of nonholonomic dynamic systems, Dokl. Acad. Sci. USSR, v. 314 (6), 1990.
Google Scholar
Schoen R. and Uhlenbeck K., A regularity theory for harmonic maps. J. Differential Geom., 17 (1982), pp. 307–335.
MathSciNet
MATH
Google Scholar
Singer I.M., Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13, pp. 685–697, 1960.
MathSciNet
MATH
CrossRef
Google Scholar
Stein E.M., Singular integrals and differentiability properties of functions, Princeton Univ. Press (1970).
MATH
Google Scholar
Strichartz R.S., Sub-Riemannian Geometry, J. Differential Geometry 24 (1986), pp. 221–263.
MathSciNet
MATH
Google Scholar
Sussmann H.J., Abnormal sub-Riemannian minimizers, this volume.
Google Scholar
Thom R., Remarques sur les problèmes comportant des inégalités différentielles globales, Bull. Soc. Math. France 87 (1959), pp. 455–461.
MathSciNet
MATH
Google Scholar
Uhlenbeck Karen K., Connections with L
p Bounds on Curvature. Commun. Math. Physics. 83, pp. 31–42 (1982).
MathSciNet
MATH
CrossRef
Google Scholar
Varopoulos N. Th., Small Time Gaussian Estimates of Heat Diffusion Kernels. II. The Theory of Large Deviations. J. of Functional Analysis, Vol 93, No 1. (1990).
Google Scholar
Varopoulos N. Th., Saloff-Coste L., Coulhon Th., Analysis and Geometry on Groups, Cambridge University Press (1993).
CrossRef
Google Scholar
Vershik A.M., Gershkovich V. Ya., nonholonomic Manifolds and Nilpotent Analysis, J. Geom. and Phys. vol. 5, no. 3, (1988).
Google Scholar
Vershik A.M., Gershkovich V. Ya., Nonholonomic Geometry and Nilpotent Analysis, J. Geom. and Phys. 5 3 (1989), pp. 407–452.
MathSciNet
Google Scholar
Vinogradov A.M., Geometry of nonlinear differential equations, J. Soviet Math. 17 (1981), pp. 1624–1649.
MATH
CrossRef
Google Scholar
Vinogradov A.M., The C-spectral sequence, Lagrangian formalism and conservation laws I, II, J. Math. Anal. Appl. 100 (pp. 1–129 ), 1984.
MathSciNet
MATH
CrossRef
Google Scholar
Vinogradov A.M., Local symmetries and conservation laws, Acta Applicandae Mathematicae 2 (21–78), 1984.
Google Scholar